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Figure 1. Main hypothesis. Evolving networks with selection for performance alone produces non-modular networks that are slow to adapt to new environments.

Adding a selective pressure to minimize connection costs leads to the evolution of modular networks that quickly adapt to new environments.




We compare a treatment
where the fitness of networks is based on performance
alone (PA) to one based on two objectives: maximizing per-
formance and minimizing connection costs (P&CC). A
multi-objective evolutionary algorithm is used [28] with one
(PA) or two (P&CC) objectives: to reflect that selection is
stronger on network performance than connection costs, the
P&CC cost objective affects selection probabilistically only
25 per cent of the time, although the results are robust to sub-
stantial changes to this value (§4).
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Figure 5. Results from tests with different environmental problems. (a) Even on a non-modular problem, modularity is higher with P&CC, though it is lower than
for modular problems. (b,c) P&CC performs better, is more modular, and has better functional decomposition than PA when evolving networks to solve five separate
XOR functions and hierarchically nested XOR functions. The examples are the final, highest-performing networks per treatment. Electronic supplementary material
figures S2—54 show networks from all trials. Three and four asterisks indicate p values less than 0.001 and 0.0001, respectively, and n.s. indicates no significant

difference.
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Figure 4. Evolving with connection costs produces networks that are more
evolvable. (a) P&CC networks adapt faster to new environments than PA net-
works. Organisms were first evolved in one environment (e.g. L-AND-R) until
they reached perfect performance and then transferred to a second environ-
ment (e.g. L-OR-R). Thick lines are medians, boxes extend from 25th to 75th
data percentiles, thin lines mark 1.5 > IQR (interquartile range), and plus
signs represent outliers. Electronic supplementary material figure 56 is a
zoomed-out version showing all of the data. (b) P&CC networks in an
unchanging environment (dotted green line) have similar levels of modularity
to the highest levels produced by MVG (solid blue line). Combining MVG with
P&CC results in even higher modularity levels (solid green line), showing that
the forces combined are stronger than either alone.



The evolutionary origin of complex
features

Richard E. Lenski*, Charles Ofriat, Robert T. Pennock:: & Christoph Adamis

* Department of Microbiology & Molecular Genetics, T Department of Computer Science & Engineering, and F Lyman Briggs School & Department of Philosophy,
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A long-standing challenge to evolutionary theory has been whether it can explain the origin of complex organismal features. We
examined this issue using digital organisms—computer programs that self-replicate, mutate, compete and evolve. Populations of
digital organisms often evolved the ability to perform complex logic functions requiring the coordinated execution of many
genomic instructions. Complex functions evolved by building on simpler functions that had evolved earlier, provided that these
were also selectively favoured. However, no particular intermediate stage was essential for evolving complex functions. The first
genotypes able to perform complex functions differed from their non-performing parents by only one or two mutations, but differed
from the ancestor by many mutations that were also crucial to the new functions. In some cases, mutations that were deleterious
when they appeared served as stepping-stones in the evolution of complex features. These findings show how complex functions
can originate by random mutation and natural selection.
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Game Of Life
(Conway, 1970)

*based on von Neumann's “universal constructor” (1966)
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Game Of Life
(Conway, 1970)



Langton Loop/Ants
(Langton, 1984-86)

He coined the term “Artificial Life” in the late 1980s when he organized
the first "Workshop on the Synthesis and Simulation of Living Systems"
(Artificial Life I) at the Lost Alamos National Lab in 1987.






Computer (Virus): Core Wars
(Dewdney, 1984)
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Computer (Virus) Evolution:
Tierra (Ray, 1990)

Processing Allocation Reproduction
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Computer (Virus) Evolution:
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Tierra (Ray, 1990)

COPY LOOP OF 80AAA

copy loop template

copy loop template

copy loop template

copy loop template

move contents of [bx] to [ax] (copy instruction)
decrement cx

if cx = 0 perform next instruction, otherwise skip it
jump to template below (copy procedure exit)

copy procedure exit compliment

copy procedure exit compliment

copy procedure exit compliment

copy procedure exit compliment

increment ax (point to next instruction of daughter)
increment bx (point to next instruction of mother)
jump to template below (copy loop)

copy loop compliment

copy loop compliment

copy loop compliment

copy loop compliment (10 instructions executed per loop)



Computer (Virus) Evolution:
Tierra (Ray, 1990)

“Hosts, red, are very common.
Parasites, yellow, have appeared but are still rare.”



Computer (Virus) Evolution

Tierra (Ray, 1990)
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Immune hosts, blue, have appeared but are rare.



Computer (Virus) Evolution

Tierra (Ray, 1990)
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Computer (Virus) Evolution:
Tierra (Ray, 1990)

“Immune hosts now dominate memory,
while parasites and susceptible hosts decline in frequency.
The parasites will soon be driven to extinction.”
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