PIEYEY

Modern Robotics: Evolutionary Robotics
COSC 4560 / COSC 5560

Professor Cheney
4/27/18

Crossing the Reality Gap

ach = 1 objective:
left test case]

naot optimal
in reality

Figure 1: Examples of simulated and real robots we have used in our research. A. Fastsim (fast 2-D kinematic simulator) [16]. B.
E-puck robot in the same maze as in A [16]. C. Quadruped robot simulated in RobDyn (Bullet) [14-16, 22]. D. Real quadruped
robot based on Dynamixel actuators (AX-12) [14-16, 22]. E. iCub robot crawling simulated in our new Dart-based simula-
tor [23]. F. Real iCub robot crawling. G. Hexapod robot simulated in RobDyn (ODE) [4-6, 13]. H. Real hexapod robot [3-6, 13].

Automatic design and
manufacture of robotic lifeforms

Hod Lipson & Jordan B. Pollack

Computer Science Department, Volen Center for Complex Systems,
Brandeis University, Waltham, Massachusetts 02454, USA

Linear

actuator Neuron

Bar

Ball joint

Infinite \

plane

Figure 1 Schematic illustration of an evolvable robot. Bars connect to each other to form
arbitrary trusses; by changing the number of bars and the way they connect, the structural
behaviour of the truss is modified—some substructures may become rigid, while others
may become articulated. Neurons connect to each other via synapses to form arbitrary
recurrent neural networks. By changing the synapse weights and the activation threshold
of the neuron, the behaviour of the neuron is modified. By changing the number of
neurons and their connectivity, the behaviour of the network is modified. Also, we allow
neurons to connect to bars: in the same way that a real neuron governs the contraction of
muscle tissue, the artificial neuron signal will control the length of the bar by means of a
linear actuator. All these changes can be brought about by mutational operators. A
sequence of operators will construct a robot and its controller from scratch by adding,
modifying and removing building blocks. The sequence at the bottom of the image
illustrates an arbitrary progression of operators that create a small bar, elongate it and
split it. Simultaneously, other operators create a neuron, add another neuron, connect
them in a loop, and eventually connect one of the neurons to one of the bars. The bar is
now an actuator. Because no sensors were used, these robots can only generate patterns
and actions, but cannot directly react to their environment.

Evolution process

Experiments were performed using version 1.2 of GOLEM (Genetically Organized Lifelike
Electro Mechanics), which is available at <http://www.demo.cs.brandeis.edu/golem>. We
performed a simulated evolutionary process: the fitness function was defined as the net
euclidean distance that the centre-of-mass of an individual moves over a fixed number
(12) of cycles of its neural control. We started with a population of 200 null (empty)
individuals. Each experiment used a different random seed. Individuals were then selected,
mutated, and replaced into the population in steady state as follows: the selection
functions we tried were random, fitness-proportionate or rank-proportionate. The
mutation operators used to generate an offspring were independently applied with the
following probabilities: a small mutation in length of bar or neuron synaptic weight (0.1),
the removal or addition of a small dangling bar or unconnected neuron (0.01), split vertex
into two and add a small bar, or split bar into two and add vertex (0.03), attach or detach
neuron to bar (0.03). At least one mutation was applied. The mutations took place on the
symbolic representation of the phenotype. After mutation, a new fitness was assigned to
the individual by means of a simulation of the mechanics and the control (see details
below). The offspring was inserted into the population by replacing an existing individual.
The replacement functions we tried chose individuals to replace either randomly, in
inverse-proportion to their fitness, or using similarity-proportionate criteria (determi-
nistic crowding™). Various permutations of selection-replacement methods are possible;
the results we report here were obtained using fitness-proportionate selection and random
replacement. However, using rank selection instead of fitness-proportionate selection, or
using random selection with fitness-proportionate replacement yielded equivalent results.
The process continued for 300 to 600 generations (approximately 10° evaluations overall).
The process was performed both serially and in parallel (on a 16-processor computer). On
parallel computers we noticed an inherent bias towards simplicity: simpler machines
could complete their evaluation sooner and consequently reproduce more quickly than
complex machines (this could be avoided with a generational implementation).

Our evolutionary simulation was based on evolutionary strategies™ and evolutionary
programming™, because it directly manipulated continuous valued representations and
used only elementary operators of mutation. Alternatively, we could have used genetic
algorithms™ and genetic programming™ that introduce crossover operators that are
sensitive to the structure of the machines, which might change the rate of evolution and
lead to replicated structures. We did not form a morphoelogical grammar from which the
body is developed™, but evolved directly on the symbolic representation of the phenotype.
And, instead of separating body (morphology) and brain (control) into separate
populations, or providing for a ‘neonatal’ stage that might allow us to select for brains that
are able to learn to control their bodies, we simply applied selection to bodies and brains as
integrated units. This simplified experimental set-up followed our focus on completing
the simulation and reality loop, but we anticipate that the many techniques that have been
developed in evolutionary and co-evolutionary learning™~*" will enrich our results.

£ SUolEIaUAL)

k I| 1"
< Ancestral Proximity =

€ suoneIBusg)

< Ancestral Proximity -

Figure 2 Phylogenetic trees of several different evolutionary runs. Each node in the tree
represents an individual and links represent parent—child relationships. The vertical axis
represents generations, and the horizontal axis represents ancestral proximity in terms of
the hops along the tree necessary to get from one individual to another. All trees originate
at a common root denoting an empty robot with zero bars and actuators. Trees exhibit

€ SUOIBIBUIL)

< Ancestral Proximity =

€ Ancestral Proximity =

various degrees of divergence and speciation: a, extreme divergence, resulting from
niching methods?; b, extreme convergence, resulting from fitness-proportionate
selection; ¢, intermediate level of divergence, typical of earlier stages of fitness-
proportionate selection; and d, massive extinction under fitness-proportionate selection.
The trees are thinned, and depict several hundred generations each.

e ———

No.5 F=0.09 No.51 F=0.08 No.74 F=0.08 No.135 F=0.05 Neo.176 F=0.07

= oy
. . i

No.15 F=0.06 No.52 F=0.06 No.89 F=0.06 No.136 F=0.07 No.189 F=0.09

No.16 F=0.08 No.57 F=0.06 No.92 F=0.06 No.145 F=0.06 No.190 F=0.06

—_
| e i

No.34 F=0.06 No.62 F=0.09 No.112 F=0.09 No.156 F=0.07

No.41 F=0.21 No.69 F=0.05 No.116 F=0.07 No.169 F=0.25

No.42 F=0.06 No.70 F=0.06 No.125 F=0.06 No.175 F=0.08

Figure 3 A generation of robots. An arbitrarily sampled instance of an entire generation, individual. Two subpopulations of robots are observable, each with its own variations: one
thinned down to show only significantly different individuals. The caption under each flat on the ground, and the other containing some elevated structure.
image provides an arbitrary index number (used for reference) and the fitness of that

Figure 4 Physical embodiment process. a, Automatically 'fleshed’ joints in virtual space;
b, a physical replication process in a rapid prototyping machine that builds the three-
dimensional morphology layer after layer; e, pre-assembled body in mid print with
discardable support structure; d, a close-up image of a joint printed as a single unit. The

ball is printed inside the socket.

FAB@HOME

Figure 5 Three resulting robots. Real robots (left); simulated robots (right). a, A
tetrahedral mechanism that produces hinge-like motion and advances by pushing the
central bar against the floor. b, This surprisingly symmetric machine uses a seven-neuron
network to drive the centre actuator in perfect anti-phase with the two synchronized side
limb actuators. While the upper two limbs push, the central body is retracted, and vice
versa. ¢, This mechanism has an elevated body, from which it pushes an actuator down
directly onto the floor to create rafcheting motion. It has a few redundant bars dragged on
the floor, which might be confributing to its stability. Print times are 22, 12 and 18 hours,
respectively. These machines perform in reality in the same way that they perfarm in
simulation. Motion videos of these robots and others are available: see Supplementary
Information.

Table 1 Results

Distance travellad (cm)
Machine Yirtual Phiy=ical
Tetrahedron (Fig. Sa) 38.5 38.4 [35)
Arrow (Fig. 5b) 89.6 22518
Pusher (Fig. Sc) B5.1 23.4 15

Camparison af the performancs of physical machines versus their virtual arigin. Vales are the net
distancs that tha centra of mass of sach maching travelled over 12 cydas of newral netwarke
Distancas given n the column haaded ‘physical” are compeansated for scale reduction [actual
distancs i shawn in parentheses). The misrmatah in tha last two nows is pramarily dus ta the slipping
af limbs an the surfaca.

Golem Project

Lipson & Pollack, Nature 2000

Crossing the Reality Gap in Evolutionary Robotics
by Promoting Transferable Controllers

Sylvain Koos Jean-Baptiste Mouret Stéphane Doncieux
ISIR, CNRS UMR 7222 ISIR, CNRS UMR 7222 ISIR, CNRS UMR 7222
Univ. Pierre et Marie Curie Univ. Pierre et Marie Curie Univ. Pierre et Marie Curie
F-75005, Paris, France F-75005, Paris, France F-75005, Paris, France

koos@isir.upmc.fr mouret@isir.upmc.fr doncieux@isir.upmc.fr

This paper introduces an alternative method based on an
evaluation of the transferability. A controller is said transfer-
able if the corresponding trajectories of the robot (expressed
in a relevant state space) in simulation and in reality are
quantitatively similar. Based on this definition, we propose
a new evolutionary approach that aims to:

e find controllers that are both relevant for a given task
and transferable from simulation to reality;

e minimize the number of transfers by relying at most on
the simulation and only conducting a few experiments
on the real robot during the evolutionary run.

Solutions that behave at best in simulation frequently ex-
ploit bugs or badly modeled phenomena, making them not
transferable. Transferability and efficiency therefore appear
to be conflicting objectives. In order to look for relevant
trade-off solutions, we propose to optimize solutions with a
Pareto-based Multi-Objective Evolutionary Algorithm (MOEA)
in which two objectives are defined: a task-dependent fitness
only computed in simulation and a transferability objective.

Behavioral features and distance.

For each controller evaluated in simulation, we assume
that its corresponding behavior can be summed up by n
values, called behavioral features. Once computed, these
features allow to define a behavioral distance between indi-
viduals. Let b and b® be the vectors of n behavioral
features corresponding to the controllers ¢ and ¢, the
behavioral distance b_dist between these controllers is:

b_dist(c?,c?) = |[b® — b2

This behavioral distance allows to compare controllers in
a simple and fast manner without any dependence on con-

trollers’ genotype/phenotype or assumption about it.

Behavioral diversity.

To quantify the diversity of a controller from the already
transferred ones, we define a behavioral diversity value as
follows'. Let C7 be the set of the already transferred con-
trollers and b_dist the behavioral distance, the behavioral
diversity value diversity(c) for a given controller c¢ is:

diversity(c) = mine,cc, b_dist(c, c¢i)

STR disparity.

To estimate controller’s transferability, an exact simulation-
to-reality disparity value is computed by transferring a con-
troller and comparing the corresponding real and simulated
behaviors of the robot. Let us assume that some controllers
have already been transferred onto the real robot, the behav-
ioral distance defined above allows to compute an approxi-
mated STR disparity value for any controller ¢. Let Cr be
the set of the already transferred controllers and D*(¢;) the
exact STR disparity value corresponding to the controller
¢; € Cp, the approximated STR disparity D of ¢ is:

D*(¢;)
D(e) = Z b_dist(c, ci)’

|) 1
with N = Z b_dist(c, c;)

E‘LEGT

Evaluation objectives.

The evaluation process only takes place in simulation.
Each controller is evaluated by 2 main objectives in a multi-
objective manner:

1. the task-dependent fitness, to find good controllers;

2. the corresponding approximated STR disparity, to find
transferable controllers.

Moreover, in order to minimize the number of transfers we
want to efficiently explore the controller state space. Explo-
ration can be improved by maintaining behavioral diversity
among the population with the help of a third objective [16]:

3. the behavioral diversity value defined above.

Such a diversity objective looks for solutions that show the
more different behaviors from those of the already trans-
ferred controllers and ensures that any new experiment is
meaningful.

IN REALITY - : = IN SILICO
transferred
| controllers

SHCE : .. 12) approximated

{ STR disparity - \\ aTH dfsl_f’ﬂ”fl_’

L - H 13) diversity application of the
real ~ e_rolutmnary operators
behaviar S & i -

{if diversity sufficient| controller
data transfer to population
processin rey i ~ __
£ : construction of the next
el controller population

u
'
) behavioral features

L“fu simulated (1) casic-dapandant
S : |behavior fitness
F-' E ¥ = y
real robot i 4 :

Figure 2: Steps of the proposed algorithm at each
generation — A1l. The behavioral features and the
task-dependent fitness are evaluated for each con-
troller in simulation. A2. The behavioral features of
a given controller allow to compute the correspond-
ing approximated STR disparity along with the di-
versity value based on behavioral distances to the
already transferred controllers. B. If this behavioral
diversity value is high enough for some controllers,
one among them is transferred onto the real system
and the corresponding exact STR disparity is com-
puted by comparing the observed simulated and real
behaviors of the robot. C. The evolutionary opera-
tors are applied to controllers and the selection step
builds the next population.

3.2 Algorithm outline

To compute the approximated STR disparity values at
the beginning of a run, we assume that a controller co has
already been transferred onto the real system. The corre-
sponding exact STR disparity D™ (co) and its behavioral fea-
tures are then available and an approximated STR disparity
value can be computed for each controller.

FEach generation of the algorithm takes place as follows
(Figure 2):

A. evaluation of the controllers:

Al. computation of the task-dependent fitness objec-
tive and the behavioral features;

A2, evaluation of the 2 other objectives in relation to
the already transferred controllers (approximated
STR disparity and diversity objective);

B. if some controllers have a high enough diversity, one
among them is transferred onto the real system:;

C. application of evolutionary operators and generation
of the next population.

The transfer step B occurs at each generation: once all
controllers are evaluated, at most one controller from the
population is transferred onto the real system.

task-dependent fitness
(to maximize}A

approximated
ideal point

transferable

> STR disparity

(to minimize)

Figure 3: Illustration of the best compromise defi-
nition on a non-dominated set.

= = I
L -]
I
E E i i
]

= [+a] = o I . o
2 2 i o 0
B B | "
== - : " o]
E No- E Nod 1 o]
c E c E : 8]
= e I L
U m U o I »
E E E E I (0]
g£o¥ 88" 9
= = ; oc3 X x
- = o X
s ﬂ i |
E i E ki x| % . 5
> > : s]
S | S |§ Fwe

L= D L=

! I I | | : I | | | I I I
B Z 4 B 8 g0 12 14 g 2 4 B B I 12 34
Approximated STR disparity Exact STR disparity

(to minimize)

Figure 5: Graph A: non-dominated individuals (cir-
cle) along with last population (cross) obtained with
a typical run in setup Ezp, (Proposed Algorithm,
variant RandomT & Div) in terms of covered dis-
tance in the simple simulation and approximated
disparity. The black circles are the non-dominated
set without taking into account the diversity objec-
tive. Graph B: same individuals (setup Exp:) ex-
pressed in terms of covered distance in the simple
simulation and exact disparity.

Expi: simulation to simulation

[Covered distance]

+ mean value
I range
O standard deviation _

1 4JDU

+ mean value
I standard deviation
-

=}
| 2
| ~N
i
r wE
e E 2
o |
i
P E_ -
@ o 34
a™ 1 = L
ot @
e @
i [=}
m -
g 3 #
i 3
T T H ¥
==
=t
M
e e | o
i -
—— O bl
+ ™
r I .
ad
- (=2
Tdia Tdiv Tdin Contrel Tdiw Tdiv Tdiv
0.05 0.025 0.05 0.025 0,05 0.025 Algarithm 0,05 0023 0,05 0.025 0.05 0025
RandomT & Div MaxDivT & Div RandamT & NaDiv RandomT & Div MaxDivT & Div RandemT & NoDiv

Figure 6: Results for setup Fzxp,;: exact dispar-
ity (left, except for Control Algorithm: D* =
55.51, 0p= = 26.41) and covered distance (mm, right)
in accurate simulation of the best solutions obtained
with each algorithm. The diversity threshold val-
ues T4, are written above the variant names. All
variants behave better than the Control Algorithm
both in terms of disparity (Student T-test p-values
< 107%) and distance (p-values < 107?) except for
RandomT & NoDiv variant (p-value = 8.01 107%).
Moreover, for RandomT & Div and MazxDivT & Dwv
variants, the disparities are clearly lower than 1: the
found best solutions show good transferability prop-
erties.

Exp2: simulation to real robot
|Covered distance]

mean value
range
standard deviation

2.5
OH +

2.0
1000

+ mean value
I standard deviation

|

Boo

1.5
|
1

Real disparity

1.0

Real coevered distance
600

0.5
400

T

200

0.0

Control RandomT & Div Control RandomT & Div
Algorithm Algorithm
Tdiv = Q]. Tdip = 01

Figure 7: Results for setup FExp2: exact disparity
(left) and covered distance in reality (mm, right)
of the best solutions obtained with each algorithm.
Due to the few repetitions (5), it is hazardous to
compute any relevant statistical significance. How-
ever, the RandomT & Div variant behaves clearly
better than the Control Algorithm with disparities
lower than 1 and finds more efficient controllers on
average regarding the covered distance objective.

Not All Physics Simulators Can Be Wrong in the Same Way

Shane Celis Josh Bongard
Morphology, Evolution & Cognition Laboratory Morphology, Evolution & Cognition Laboratory
Vermont Complex Systems Center Vermont Complex Systems Center
College of Engineering and Mathematical College of Engineering and Mathematical
Sciences Sciences
University of Vermont University of Vermont

scelis@uvm.edu jbongard@uvm.edu

a}. |

Figure 1: Quadruped in a) Open Dynamics Engine
and b) Bullet Physics Library

The robot is evaluated in two physics simulators: 1) the
Open Dynamics Engine (ODE) and 2) the Bullet Physics
Library. The physics simulators use a fixed time step of 0.01
seconds. The robots are evaluated for 10 simulated seconds.

The distance traveled in the x-y ground plane by ODE
and Bullet is denoted by d, and ds respectively, measured
in meters. Three experiments are conducted based on these
measurements. Experiment A maximizes d; and minimizes
|Ad| = |d1 — dz2|. Experiment B maximizes di and max-
imizes |Ad|. Experiment C, the control experiment, max-
imizes d; only. Twenty independent trials of each experi-
ment are performed using the multi-objective optimization
algorithm NSGA-II[2] with a population of 20 and 250 gen-
erations.

Physics
Abstraction

]

Layer—"

PAL supports a large number of physics engines. It provides a unique interface for:

+ Physics Engines

o o o o o o0 o O o O o0 O O 0

Box2D (experimental)

Bullet

Dynamechs(deprecated)

Havok (experimental)

IBEDS (experimental)

JigLib

Hegen(deprecated)

Newton

ODE

OpenTissue (experimental)

PhysX (a.k.a Novodex. Ageia PhysX, nVidia Physx)
Simple Physics Engine (experimental)
Tokamak

TrueAxis

a)

d,

20

10

Experiment A b) Experiment B

. --lu R
L™ N
10F* 2 @
l.g" M
0 - n"l' Sl 4 o> d
0 10 20
c) Experiment C
d;
x -
>
10 _ . :. i
- . %
- >
_ Ty >
D" : A ﬂil
0 10 20

Figure 2: The points represent the distances
achieved by non-dominated controllers in both
physics simulators. The color of each point repre-
sents which of the twenty trials produced it: same
color, same trial. The dashed line represents the
case where the distances are the same, i.e. Ad = 0.
The arrows represent the direction of optimization
for each experiment. Experiment B shows that a
controller can be found that performs well in one
simulator while doing poorly in the other. Experi-
ment C shows that d2 < d; in all cases.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

