PIEYEY

Modern Robotics: Evolutionary Robotics
COSC 4560 / COSC 5560

Professor Cheney
4/25/18

Emergence of Locomotion Behaviours
in Rich Environments

Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne,
Yuval Tassa, Tom Erez, Ziyu Wang, S. M. Ali Eslami, Martin Riedmiller, David Silver
DeepMind

Algorithm 1 Proximal Policy Optimization (adapted from [8])

foric {1,---,N}do
Run lelC}f mp for T' timesteps, {:Dllec:tmg {qt flg, rt}
Estimate advantages A, = DY Tire — Vi(se)
Mald + Ta
forje{l,--- , M} do
Jppol(l) = f_l iﬁ!i—;% — AKL[mo1d|ms]
Update ¢ by a gradient method w.r.t. Jppo(f)
end for
forj e {1,--- ,B}do

Lpr(9) = =Xy (Zuse 7" ~'rer = Vi(se))?
Update ¢ by a gradient method w.r.t. Lir (o)
end for
ifKL[ﬂ'ﬂIthH] = .ﬁhiyh,KLtHrget then
A — a
else if KL[moua|ms] < BiowKLtarge: then
A= Ao
end if
end for

— A3C_64 — PPO_1
2500 = &

wh A (ol i — TRPO 5 PPO_4
40000 L | ' AR PPO_G4 PPO 8
TR L PPO_32
e N -- pro 15 10
. 30000 PPO_B
= -
a 1500 15
E
§ 20000 —20

1000
=25

10000 son |1
[=30

Planar Walker i Humanoid Reacher2-Memory
UG 5 10 15 20 uo 20 40 60 BO 100 120 140 _ﬁt:- 5 10 15 20 25
hours (wall clock) hours (wall clock) hours (wall clock)

Figure 1: DPPO benchmark performance on the Planar Walker (left), Humanoid (middle), and
Memory Reacher (right) tasks. In all cases, DPPO achieves performance equivalent to TRPO, and

scales well with the number of workers used. The Memory Reacher task demonstrates that it can be
used with recurrent networks.

Bodies We consider three different torque-controlled bodies, described roughly in terms of increas-
ing complexity. Planar walker: a simple walking body with 9 DoF and 6 actuated joints constrained
to the plane. Quadruped: a simple three-dimensional quadrupedal body with 12 DoF and 8 actuated
joints. Humanoid: a three-dimensional humanoid with 21 actuated dimensions and 28 DoF. The
bodies can be seen in action in figures 4, 5, and 7 respectively. Note that the Planar walker and
Humanoid bodies overlap with those used in the benchmarking tasks described in the previous section,
however the benchmark tasks only consisted of simple locomotion in an open plane.

Rewards We keep the reward for all tasks simple and consistent across terrains. The reward consists
of a main component proportional to the velocity along the x-axis, encouraging the agent to make
forward progress along the track, plus a small term penalizing torques. For the walker the reward also
includes the same box constraints on the pose as in section 2. For the quadruped and humanoid we
penalize deviations from the center of the track, and the humanoid receives an additional reward per
time-step for not falling. Details can be found in the supplemental material. We note that differences
in the reward functions across bodies are the consequence of us adapting previously proposed reward
functions (cf. e.g. [12, 18]) rather than the result of careful tuning, and while the reward functions
vary slightly across bodies we do not change them to elicit different behaviors for a single body.

Terrain and obstacles All of our courses are procedurally generated; in every episode a new course
is generated based on pre-defined statistics. We consider several different terrain and obstacle types:
(a) hurdles: hurdle-like obstacles of variable height and width that the walker needs to jump or climb
over; (b) gaps: gaps in the ground that must be jumped over; (c) variable terrain: a terrain with
different features such as ramps, gaps, hills, etc.; (d) slalom walls: walls that form obstacles that
require walking around, (e) platforms: platforms that hover above the ground which can be jumped
on or crouched under. Courses consist of a sequence of random instantiations of the above terrain
types within user-specified parameter ranges.

actions

t
u o

“‘_\—\

Prop: Joints/Sensors Extero: Terrain etc.

79\ 1l

Figure 2: Schematic of the network architecture.
We use an architecture similar to [22], consisting
of a component processing information local to the
controlled body (egocentric information; blue) and
a modulatory component that processes environ-
ment and task related “exteroceptive” information
such as the terrain shape (green).

Figure 3: Examples of the terrain types used in the experiments. Left to right and top to bottom:
hurdles, platforms, gaps, slalom walls, variable terrain.

Figure 4: Walker skills: Time-lapse images of a representative Planar Walker policy traversing rubble;
jumping over a hurdle; jumping over gaps and crouching to pass underneath a platform.

Figure 5: Time-lapse images of a representative Quadruped policy traversing gaps (left); and
navigating obstacles (right)

Easy test environment. a0 Hard test environment. i Planar Walker = Quadruped
. j-v"'-"‘»/'x,. Y b}

15 Flat B Hurdles 1o N Simple B Hurdles
0.8
0.6
0.4
0.2
0.0

MW o MV
1 M .

'Il..l',l" 30 II |']|‘|JI

Il
{f\/ ¥ 25 1| || | | |
0. o n

Lo 02 04 06 08B 10 12 14 0 02 04 06 OB 10 12 14 Friction Rubble Maodel Incline Friction Rubble Model
Training steps le7 Training steps le7

al]
S
=
o

=3 =T
= I + = R =)

I\ | 20 | .'I ll I“\ I

I' 15

[=]
=

Average returns

| I 10
/ —— Regular
/ o
Curriculum

. '“\ ||||I
A '

———

—— Regular
Curriculum

Normalized Returns
o
b

o RN W W oE &
a2 w o e vwo g ;¢
(="

=}
a
0

Figure 6: a) Curriculum training: Evaluation of policies trained on hurdle courses with different
statistics: “regular’” courses contain arbitrarily interleaved high and low hurdles (blue); “curriculum”
courses gradually increase hurdle height over the course of the track (green). During training we eval-
uate both policies on validation courses with low/*“easy" hurdles (left) and tall/*hard" hurdles (right).
The performance of the policy trained on the curriculum courses increases faster. b) Robustness of
Planar Walker policies (left) and Quadruped policies (right): We evaluate how training on hurdles
(green) increases policy robustness relative to training on flat terrain (blue). Policies are assessed on
courses with unobserved changes in ground friction, terrain surface (rubble), strength of the body
actuators, and incline of the ground plane. There is a notable advantage in some cases for policies
trained on the hurdle terrain. All plots show the average returns normalized for each terrain setting.

Emergence of Locomotion Behaviours
In Rich Environments

Evolution Strategies as a
Scalable Alternative to Reinforcement Learning

Tim Salimans Jonathan Ho Xi Chen Szymon Sidor Ilya Sutskever
OpenAl

Algorithm 1 Evolution Strategies

1: Input: Learning rate «, noise standard deviation o, initial policy parameters €
2 fori=10.1.2 ... do

3: Sampleey,...€, ~N(0,])

4 Compute returns F; = F'(0; + o¢;) fori =1,...,n

3 Set 9f+]_ — Qt + &'% E?:l Ft'-fi

6: end for

Algorithm 1 Evolution Strategies

1: Input: Learning rate «, noise standard deviation o, initial policy parameters €
2: fort =0,1,2,... do
3: Sampleey,...€, ~N(0,])

4: Compute returns F; = F(6;, + o¢;) fori =1,...,n
3 Set 9f+]_ — Qt + &'% E?:l Ft'-fi
6: end for

Algorithm 2 Parallelized Evolution Strategies

1: Input: Learning rate a, noise standard deviation o, initial policy parameters €,

2: Initialize: n workers with known random seeds, and initial parameters
vfori=012...d0

4: foreachworkeri=1,...,ndo

3 Sample ¢; ~ N (0, I)

6 Compute returns F; = F(0; + o¢;)

7: end for

8 Send all scalar returns F; from each worker to every other worker

9 for each workeri =1,...,ndo
10: Reconstruct all perturbations ¢; for 7 = 1,...,n using known random seeds
1§ 5 Set 9t+1 — Ht +ﬂ'% Z?:] Fjﬁj
12: end for

13: end for

4 Experiments

4.1 MuJoCo

We found that ES was able to solve these tasks up to TRPO’s final performance after 5 million
timesteps of environment interaction. To obtain this result, we ran ES over 6 random seeds and
compared the mean learning curves to similarly computed curves for TRPO. The exact sample
complexity tradeoffs over the course of learning are listed in Table 1, and detailed results are listed
in Table 3 of the supplement. Generally, we were able to solve the environments in less than 10x
penalty in sample complexity on the hard environments (Hopper and Walker2d) compared to TRPO.
On simple environments, we achieved up to 3x better sample complexity than TRPO.

Table 1: MuJoCo tasks: Ratio of ES timesteps to TRPO timesteps needed to reach various percentages

of TRPO’s learning progress at 5 million timesteps.

Environment 25% 50% 5% 100%
HaltCheetah 0.15 049 042 0.58
Hopper 053 364 605 6.94
InvertedDoublePendulum 046 048 049 1.23
InvertedPendulum 028 052 0.78 0.88
Swimmer 056 047 053 0.30
Walker2d 041 5.69 8.02 7.88

Game DQN A3CFF lday HyperNEAT ESFE 1 hour A2CFF
Amidar 133.4 283.9 184.4 112.0 548.2
Assault 33323 3746.1 912.6 1673.9 2026.6
Asterix 124.5 6723.0 2340.0 1440.0 3779.7
Asteroids 697.1 3009.4 1694.0 1562.0 1733.4
Atlantis 76108.0 772392.0 61260.0 1267410.0 2872644.8
Bank Heist 176.3 946.0 214.0 225.0 724.1
Battle Zone 17560.0 11340.0 36200.0 16600.0 8406.2
Beam Rider 8672.4 13235.9 1412.8 744.0 4438.9
Berzerk 14334 1394.0 686.0 720.6
Bowling 41.2 36.2 135.8 30.0 289
Boxing 25.8 33.7 16.4 49.8 95.8
Breakout 303.9 551.6 2.8 9.5 368.5
Centipede 3773.1 3306.5 25275.2 7783.9 2773.3
Chopper Command 3046.0 4669.0 3960.0 3710.0 1700.0
Crazy Climber 50992.0 101624.0 0.0 26430.0 1000344
Demon Attack 12835.2 84997.5 14620.0 1166.5 23657.7
Double Dunk 21.6 0.1 2.0 0.2 32
Enduro 475.6 82.2 93.6 95.0 0.0
Fishing Derby 2.3 13.6 49.8 49.0 339
Freeway 25.8 0.1 29.0 31.0 0.0
Frostbite 157.4 180.1 2260.0 370.0 266.6
Gopher 2731.8 8442.8 364.0 582.0 6266.2
Gravitar 216.5 269.5 370.0 805.0 256.2
Ice Hockey 3.8 4.7 10.6 4.1 4.9
Kangaroo 2696.0 106.0 800.0 11200.0 1357.6
Krull 3864.0 8066.6 12601.4 8647.2 6411.5
Montezuma's Revenge 50.0 53.0 0.0 0.0 0.0
Name This Game 5439.9 5614.0 6742.0 4503.0 5532.8
Phoenix 28181.8 1762.0 4041.0 14104.7
Pit Fall 123.0 0.0 0.0 8.2
Pong 16.2 11.4 17.4 21.0 20.8
Private Eye 298.2 194.4 107474 100.0 100.0
Q*Bert 4589.8 13752.3 695.0 147.5 15758.6
River Raid 4065.3 10001.2 2616.0 5009.0 9856.9
Road Runner 9264.0 31769.0 32200 16590.0 33846.9
Robotank 58.5 23 43.8 11.9 2.2
Seaquest 2793.9 2300.2 716.0 1390.0 1763.7
Skiing 13700.0 7983.6 15442.5 15245.8
Solaris 1884.8 160.0 2090.0 2265.0
Space Invaders 1449.7 2214.7 1251.0 678.5 951.9
Star Gunner 34081.0 64393.0 27200 1470.0 40065.6
Tennis 2.3 10.2 0.0 4.5 11.2
Time Pilot 5640.0 5825.0 7340.0 4970.0 4637.5
Tutankham 324 26.1 23.6 130.3 194.3
Up and Down 33113 545254 43734.0 67974.0 757859
Venture 54.0 19.0 0.0 760.0 0.0
Video Pinball 20228.1 185852.6 0.0 22834.8 46470.1
Wizard of Wor 246.0 5278.0 3360.0 3480.0 1587.5
Yars Revenge 7270.8 24096.4 16401.7 8963.5
Zaxxon 831.0 2659.0 3000.0 6380.0 5.6

3.2 Problem dimensionality

The gradient estimate of ES can be interpreted as a method for randomized finite differences in
high-dimensional space. Indeed, using the fact that E. _ 5,1y {F'(€) €/0} = 0, we get

vg'?}'(g) = EENN{[].__jj {F(ﬂ G 2 UE) E/U} =]EENN((}._IJ {(F(.{-} 6 3 JE) = F(E})) E/J}

It is now apparent that ES can be seen as computing a finite difference derivative estimate in
a randomly chosen direction, especially as o becomes small. The resemblance of ES to finite
differences suggests the method will scale poorly with the dimension of the parameters . Theoretical
analysis indeed shows that for general non-smooth optimization problems, the required number of
optimization steps scales linearly with the dimension [Nesterov and Spokoiny, 2011]. However, it
is important to note that this does not mean that larger neural networks will perform worse than
smaller networks when optimized using ES: what matters is the difficulty, or intrinsic dimension, of
the optimization problem. To see that the dimensionality of our model can be completely separate
from the effective dimension of the optimization problem, consider a regression problem where we
approximate a univariate variable y with a linear model § = x - w: if we double the number of
features and parameters in this model by concatenating x with itself (i.e. using features x’ = (x, x)),
the problem does not become more difficult. The ES algorithm will do exactly the same thing when
applied to this higher dimensional problem, as long as we divide the standard deviation of the noise
by two, as well as the learning rate.

In practice, we observe slightly better results when using larger networks with ES. For example, we
tried both the larger network and smaller network used in A3C [Mnih et al., 2016] for learning Atari
2600 games, and on average obtained better results using the larger network. We hypothesize that this
1s due to the same effect that makes standard gradient-based optimization of large neural networks
easier than for small ones: large networks have fewer local minima [Kawaguchi, 2016].

3.1 When is ES better than policy gradients?

Given these two methods of smoothing the decision problem, which should we use? The answer
depends strongly on the structure of the decision problem and on which type of Monte Carlo
estimator is used to estimate the gradients Vg Fpg(#) and VgFEs(6). Suppose the correlation
between the return and the individual actions is low (as 1s true for any hard RL problem). Assuming
we approximate these gradients using simple Monte Carlo (REINFORCE) with a good baseline on
the return, we have

Var[VyFpc(0)] ~ Var|R(a)] Var[V, log p(a;)],
Var[VyFs(6)] ~ Var[R(a)] Var[V log p(6; 6))]-

If both methods perform a similar amount of exploration, Var[R(a)] will be similar for both ex-
pressions. The difference will thus be in the second term. Here we have that Vg logp(a; #) =
Ef;l Vg logp(as; #) is a sum of T uncorrelated terms, so that the variance of the policy gradi-
ent estimator will grow nearly linearly with 7". The corresponding term for evolution strategies,
Vg log p(0;0), is independent of T". Evolution strategies will thus have an advantage compared to
policy gradients for long episodes with very many time steps. In practice, the effective number of
steps 1" 1s often reduced in policy gradient methods by discounting rewards. If the effects of actions
are short-lasting, this allows us to dramatically reduce the variance in our gradient estimate, and
this has been critical to the success of applications such as Atari games. However, this discounting
will bias our gradient estimate if actions have long lasting effects. Another strategy for reducing the
effective value of T is to use value function approximation. This has also been effective, but once
again runs the risk of biasing our gradient estimates. Evolution strategies is thus an attractive choice
if the effective number of time steps 7" is long, actions have long-lasting effects, and if no good value
function estimates are available.

3.3 Advantages of not calculating gradients

In addition to being easy to parallelize, and to having an advantage in cases with long action sequences
and delayed rewards, black box optimization algorithms like ES have other advantages over RL
techniques that calculate gradients. The communication overhead of implementing ES in a distributed
setting 1s lower than for competing RL. methods such as policy gradients and Q-learning, as the only
information that needs to be communicated across processes are the scalar return and the random
seed that was used to generate the perturbations e, rather than a full gradient. Also, ES can deal with
maximally sparse and delayed rewards; only the total return of an episode 1s used, whereas other
methods use individual rewards and their exact timing.

By not requiring backpropagation, black box optimizers reduce the amount of computation per
episode by about two thirds, and memory by potentially much more. In addition, not explicitly
calculating an analytical gradient protects against problems with exploding gradients that are common
when working with recurrent neural networks. By smoothing the cost function in parameter space, we
reduce the pathological curvature that causes these problems: bounded cost functions that are smooth
enough can’t have exploding gradients. At the extreme, ES allows us to incorporate non-differentiable
elements into our architecture, such as modules that use hard attention [Xu et al., 2015].

Black box optimization methods are uniquely suited to low precision hardware for deep learning.
Low precision arithmetic, such as in binary neural networks, can be performed much cheaper than
at high precision. When optimizing such low precision architectures, biased low precision gradient
estimates can be a problem when using gradient-based methods. Similarly, specialized hardware for
neural network inference, such as TPUs [Jouppi et al., 2017], can be used directly when performing
optimization using ES, while their imited memory usually makes backpropagation impossible.

By perturbing in parameter space instead of action space, black box optimizers are naturally invariant
to the frequency at which our agent acts in the environment. For MDP-based reinforcement learning
algorithms, on the other hand, it 1s well known that frameskip 1s a crucial parameter to get right for
the optimization to succeed [Braylan et al., 2005]. While this is usually a solvable problem for games
that only require short-term planning and action, it 1s a problem for learning longer term strategic
behavior. For these problems, RL needs hierarchy to succeed [Parr and Russell, 1998], which is not
as necessary when using black box optimization.

Deep Neuroevolution: Genetic Algorithms are a Competitive Alternative for
Training Deep Neural Networks for Reinforcement Learning

Felipe Petroski Such Vashisht Madhavan Edoardo Conti Joel Lehman Kenneth O. Stanley Jeff Clune
Uber Al Labs

Algorithm 1 Simple Genetic Algorithm

Input: mutation power o, population size N, number of
selected individuals T, policy initialization routine ¢.
for g = 1,2...GG generations do
for: = 1, ..., N in next generation’s population do
if g = 1 then
P? = ¢(N(0,I)) {initialize random DNN}
F? = F(P7) {assess its fitness }

else
if 2 = 1 then
P = ’pf‘l; = Ff“l {copy the elite}
else

k = uniformRandom(1, T") {select parent}
Sample e ~ N(0, I)
P? =PI~ + oe {mutate parent}
F? = F(P?) {assess its fitness }
Sort P9 and F'9 with descending order by F'¢
Return: highest performing policy, P/

DQN Evolution Strategies Random Search GA GA A3C
Frames, Time 200M, ~7-10d 1B, ~ 1h IB,~1h 1B,~1h | 4B,~ 4h 1.28B, 4d
Forward Passes 450M 250M 250M 250M 1B 960M
Backward Passes 400M 0 0 0 0 640M
Operations 1.25B U 250M U 250MU 250M U 1IBU 224B U
Amidar 978 112 151 216 294 264
Assault 4,280 1,674 642 819 1,006 5,475
Asterix 4,359 1,440 1.175 1,885 2,392 22,140
Asteroids 1,365 1,562 1,404 2,056 2,056 4,475
Atlantis 279,987 1,267,410 45,257 79,793 125,883 911,091
Enduro 729 95 32 39 50 -82
Frostbite 797 370 1,379 4,801 5,623 191
Gravitar 473 805 290 462 637 304
Kangaroo 1,259 11,200 1,773 8,667 10,920 04
Seaquest 5,861 1,390 559 807 1,241 2 30
Skiing -13,062 -15,442 -8,816 -6,995 -6,522 -10,911
Venture 163 760 547 810 1,093 23
Zaxxon 5,363 6,380 2,943 35,183 6,827 24,622

Table 1. The Atari results reveal a simple genetic algorithm is competitive with Q-learning (DQN), policy gradients (A3C), and
evolution strategies (ES). Shown are game scores (higher is better). Comparing performance between algorithms is inherently chal-
lenging (see main text), but we attempt to facilitate comparisons by showing estimates for the amount of computation (operations, the
sum of forward and backward neural network passes), data efficiency (the number of game frames from training episodes), and how
long in wall-clock time the algorithm takes to run. The GA, DQN, and ES, perform best on 3 games each, while A3C wins on 4 games.
Surprisingly, random search often finds policies superior to those of DQN, A3C, and ES (see text for discussion). Note the dramatic
differences in the speeds of the algorithm, which are much faster for the GA and ES, and data efficiency, which favors DQN. The scores
for DQN are from Hessel et al. (2017) while those for A3C and ES are from Salimans et al. (2017). For A3C, DQN, and ES, we cannot
provide error bars because they were not reported in the original literature; GA and random search error bars are visualized in (Fig. 1).
The wall-clock times are approximate because they depend on a variety of hard-to-control-for factors. We found the GA runs slightly
faster than ES on average.

amidar assault asterix asberoids.

b e 4500
5000 20000 -
o e
g " | ssssessssceccesscessese. —
2 G 15000
2 e 2000
= -
S i 10030 2500
o aon
2 2000
& A e e 1500 S e s
200 - S P S—
B —— { Y
: : . s — w000
o
o 1 2 3 1 0 1 2 3 4 o 1 F] 3 4 a 1] 3 1
atlantis enduro frosthite gravitar
__ pop ST SR RS S
1200000 o0 8000
- E00 000 ea
2 1000000 —_—e
g 500 8000 000 —
& 800000 ano 5000 L . ——— ——————
c
S 800000 300 2000 41 b —
&
| g 330
2 andooo 200 000 I/
- I 3 e b] 100 2000 r 200
™ 200000 ——
p— o D00 R e e s s 100
a e —100 O e e s o
@ 1 2 E] 4 a 1 2 1 4 a 1 2 3 4 a 1 2] a
kangaroo seaquest skiing venture
12000 B0 re— — 60040 1200
|
10000 5000 —8000 JJJ_.,___- 1000
B g
a
£ pean an04 RO0R: 10 =" i
= 12000
_5 B0 3000 L i 600 —
] 14600
= 40040 A
g 2000 |
~16000
W 2000 — 00 L - — -
—— A -18000
a = o
o 1 2 3 4 o 1 2 3 4 o 1 F] 3 4 o 1] 3 a
Mumber of Frames led Number of Frames led Number of Frames led
Zaxxon
25000
o 20000
L=
= GA
2 15000 - RS
=
g DON
T 10000 e =]
3
— A3C
-
b 3000
o

1 2 .] 4
Mumber of Frames 1=8

Figure 1. GA and random search performance across generations on Atari 2600 games. The GA significantly outperforms random
search in every game (p < 0.03). The performance of the GA and random search to DQN, A3C, and ES depends on the game. We plot
final scores (as dashed lines) for DQN, A3C, and ES because we do not have their performance values across training and because they
trained on different numbers of game frames (see Table 1). For GA and RS, we report the median and 95% bootstrapped confidence
intervals of the median across 5 experiments of the best mean evaluation score (over 30 stochastic rollouts) seen up to that point in
training.

3.2. Novelty Search

4.3. Image Hard Maze
Goal = [LEET]
Trap 2 mp S & |
Trap 1= I\.,I '“-L.L__H |

Start =p

The original version of this problem involves only a few
inputs (radar sensors to sense walls) and two continuous
outputs, one that controls speed (forward or backward) and
another that controls rotation, making it solvable by small
neural networks (on the order of tens of connections). Be-
cause here we want to demonstrate the benefits of NS at
the scale of deep neural networks, we introduce a new ver-
sion of the domain called Image Hard Maze. Like many
Atari games, it shows a bird’s-eye view of the world to
the agent in the form of an 84 x 84 pixel image. This
change makes the problem easier in some ways (e.g. now
it is fully observable), but harder because it is much higher-
dimensional: the neural network must learn to process this
pixel input and take actions. For temporal context, the cur-
rent frame and previous three frames are all input at each
timestep, following Mnih et al. (2015). An example frame
is shown in Fig. 3b. The outputs remain the same as in the
original problem formulation.

3.2. Novelty Search

4.3. Image Hard Maze
Goalmp | L
Trap 2 mp
Trap 1= h\‘..l '“-L.L__H
- .
Start =p :

—25 Trap 2
T -50
i+
=
o =75 Trap 1
=
N
*g‘ -100
E ES
W —125 GA
—— GA-NS
_150 === Solution
A2C
-175 === DQN
0 50 100 150 200 250

lteration

Figure 4. Image Hard Maze results reveal that novelty search
can train deep neural networks to avoid local optima that
stymie other algorithms. The GA, which solely optimizes for
reward and has no incentive to explore, gets stuck on the local
optimum of Trap 2 (the goal and traps are visualized in Fig. 3b).
The GA optimizing for novelty (GA-NS) is encouraged to ignore
reward and explore the whole map, enabling it to eventually find
the goal. ES performs even worse than the GA, as discussed in the
main text. DQN and A2C also fail to solve this task. For ES, the
performance of the mean @ policy each iteration is plotted. For
GA and GA-NS, the performance of the highest-scoring individ-
ual per generation 1s plotted. Because DQN and A2C do not have
the same number of evaluations per iteration as the evolutionary
algorithms, we plot their final median reward as dashed lines. Fig.
5 shows the behavior of these algorithms during training.

~ 100k awals, ~10min ~ 1000k pvals, ~ 28 - 2000k evals, ~3h ~ 000K pvals, ~5h ~A000k evals, ~&h

—~1000k evals, -2n - 2000k evals. -3h = 3000k evals, -5n

-

=100k avals, —2m

Ganatic Algorithm

=
=

Evolubion Strategies

Ga, - Movelty Search

-25¢ evals, - 18h

DO

- 300k evals, —23h =400k evals, =470 = T00k evals, —82h

\9\

AZC

\Q\\Q\

Figure 5. How different algorithms explore the deceptive Image Hard Maze over time. Traditional reward-maximization algorithms
do not exhibit sufficient exploration to avoid the local optimum (going up). In contrast, a GA optimizing for novelty only (GA-NS)
explores the entire environment and ultimately finds the goal. For the evolutionary algorithms (GA-NS, GA, ES), blue crosses represent
the population (pseudo-offspring for ES), red crosses represent the top T' GA offspring, orange dots represent the final positions of GA
elites and the current mean ES policy, and the black crosses are entries in the GA-NS archive. All 3 evolutionary algorithms had the same
number of evaluations, but ES and the GA have many overlapping points because they revisit locations due to poor exploration, giving
the illusion of fewer evaluations. For DQN and A2C, we plot the end-of-episode position of the agent for each of the 20K episodes prior
to the checkpoint listed above the plot.

Accelerating Deep
Neuroevolution: Train Atari in
Hours on a Single Personal
Computer

By Felipe Petroski Such, Kenneth O. Stanley and Jeff Clune

PYiil v

Single threaded CPU + GPU Multithreaded CPU + GPU Pipelined CPU + GPU
crUlll B B cruEm CPUJET ol -
U W W cruE | W cru i (I IEH IE

ol | [EE cruf 1 B3 I3
GPU: m 123 GPU: |:|

Optimizing the scheduling of populations of heterogeneous networks in RL. The blue boxes are domain
simulators, such as the Atari game emulator or physics engines like MuJoCo, which can have episodes
of different lengths. A naive way to use a8 GPU (left) would result in low performance for two reasons:
1) a batch size of one for the GPU, which fails to take advantage of its parallel computation abilities,
and 2) idle time while the GPU waits for the CPU and vice versa. A multithreaded approach (center)
allows for a more efficient use of the GPU by having multiple CPUs step the simulatars in parallel but
causes the GPU to be idle while the CPUs are working and vice-versa. Our pipelined implementation
(right) allows the GPU and CPU to operate efficiently. This approach also works with multiple GPUs and

CPUs operating simultaneously, which is what we did in practice.

VGG-56 VGG-110

Renset-56 Densenet-121

Neural loss functions with and without skip connections. The top row depicts the loss function of a 56-layer and 110-layer net using
the CIFAR-10 dataset, without residual connections. The bottom row depicts two skip connection architectures. We have Resnet-56
(identical to VGG-56, except with residual connections), and Densenet (which has a very elaborate set of skip connections). Skip
connections cause a dramatic "convexification” of the loss landscape.

VISUALIZING THE LOSS LANDSCAPE OF NEURAL NETS

Hao Li', Zheng Xu', Gavin Taylor’, Christoph Studer’, Tom Goldstein'
I'University of Maryland, College Park, *United States Naval Academy, Cornell University
{haoli,xuzh, tomg}@cs.umd.edu, taylor@usna.edu, studerfcornell.edu

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The vertical axis is
logarithmic to show dynamic range. The proposed filter normalization scheme is used to enable
comparisons of sharpness/flatness between the two figures.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

