PIEYEY

Modern Robotics: Evolutionary Robotics
COSC 4560 / COSC 5560

Professor Cheney
4/23/18

End-to-End Training of Deep Visuomotor Policies

Sergey Levine! SVLEVINEQEECS.BERKELEY.EDU
Chelsea Finnf CBFINNQEECS.BERKELEY.EDU
Trevor Darrell TREVORQEECS.BERKELEY.EDU
Pieter Abbeel PABBEELQEECS.BERKELEY.EDU

Division of Computer Science
University of California
Berkeley, CA 94720-1776, USA
"These authors contributed equally.

i L
B ———

/#
| =85

hanger ' hammer bottle

Figure 1: Our method learns visuomotor policies that directly use camera image observa-
tions (left) to set motor torques on a PR2 robot (right).

RGB image convi conv2 conv3 spatial softmax feature maotor

') points torques
w77 cony | o ers . el fully fully fully
stride 2 5x5 conv 5x5 conv expected connected [0 connected 1| connected
RelU RelLU RelLU 2D position RelU RelLU linear
a0 | |
: 17 113 109 64 40 40 7
7 109

robot
configuration
39

Figure 2: Visuomotor policy architecture. The network contains three convolutional lay-
ers, followed by a spatial softmax and an expected position layer that converts pixel-wise
features to feature points, which are better suited for spatial computations. The points are
concatenated with the robot configuration, then passed through three fully connected layers
to produce the torques.

automatically

requires robot collect visual
pose data
learn initial .
ocal train pose CNN
controllers EWF
initial initial
controllers visual features
- N
collect samples

from p;

e local train global
Optlmlﬁe oca policy g to match
controllers Pi local controllers p;

\Guided Policy Search J/

Figure 3: Diagram of our ap-
proach, including the main guided
policy search phase and initializa-

tion phases.

o (We|Xe)P(Xeq1[Xe, 1y).

éf‘
||::]ha

T = {X1,u1,X2,U2,...,X7,ur}

The goal of a task is given by a cost function /(x;,u;), and the objective in policy search is
to minimize the expectation Er [;—; £(X¢, uy)], which we will abbreviate as E,) [£(7)].

symbol definition example/details
Markovian system state at time step t € -]?mt angles, er_ld—eﬂ'ect'or posef ObJe.Ct pc?31-
Xt [,7] tions, and their velocities; dimensionality:
’ 14 to 32
trol " ¢t tep t € [1,7] joint motor torque commands; dimensional-
uy control or action at time step , ity: 7 (for the PR robot)
RGB camera image, joint encoder readings
O observation at time step t € [1, 7] & velocities, end-effector pose; dimensional-
ity: around 200,000
- trajectory: notational shorthand for a sequence of states
7 = {X1,u1, X2, U2,..., X7, Ur} and actions
dist bet bject in th i
(x4, X¢) cost function that defines the goal of the task istance belween an object in the ghipper

and the target

p(XH-llxta Ut)

unknown system dynamics

physics that govern the robot and any ob-
jects it interacts with

stochastic process that produces camera im-

plot|x¢) unknown observation distribution
ages from system state
learned nonlinear global policy parameter- | convolutional neural network, such as the
mo(ulor) | : ot
ized by weights 6 one in Figure 2
o (ue|xe) [70 (eloe)p(or]xe)do notational shorthand for observation-based
O T 6{Ut]0)plOe Xt)0t policy conditioned on state
(e]x:) learned local time-varying linear-Gaussian |time-varying linear-Gaussian controller has
Pl Xt controller for initial state x} form N (Kgix: + kyi, Ci)
o (7) trajectory distribution for mg(u:|x¢): | notational shorthand for trajectory distribu-
]

p(X]_) Hg-‘:l Wﬂ(utle)p(xt+1 Ixta ut)

tion induced by a policy

run each
pi(ue|xt)
on robot

samTPles

fit optimize g
dynamics w.r.t. Ly

optimize each p;(7)
w.r.t. L.-p

£9(9 p Z (xtsut)[e Xt ut)] + P(Xt)ﬂﬂ(uﬂxt)[)‘xt;llt] - EP(Xt,Ut}[’\xt,ut] + thﬁf(g,p)

Ly(p,0) Z p(oce) (Xt)] + B, ey (ue o) [P ue] = Eip(seg) [Axce] + 1295 (0, p),

2D insertion 3D insertion swimming

"y
"y

. | O S
0.8 Q0.8 = 4}
c c @
Do Sos ® 3
@ @ =57
- - O
.4 =04 ')
© o c
= &0 <
2 2 <=
- - u
0 © 0 Seeal——8—§ 4§ "—Eé
100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 8OO 200 400 GO0 8O0 1000 1200 1400 1600
samples samples samples

—e— RWR (100 samp)
—#— RWR (20 samp) itr 1 itr 20 itr 40
—&— PILCO (5 samp) w
) :)))) = ours (20 samp)
100 200 300 400 500 600 700 800 —— ours {with GMM, 5 samp)
samples

‘e octopus arm ——iLQG, true mode itr 1 itr 2 itr 4 itr 1Y itr 5
e ————— | —e— REPS (100 samp)
REPS (20 + 500 samp) ;
* " | —e— CEM (100 samp)
—=— CEM (20 samp)

target distance

Figure 4: Results for learning linear-Gaussian controllers for 2D and 3D insertion, octopus
arm, and swimming. Our approach uses fewer samples and finds better solutions than prior
methods, and the GMM further reduces the required sample count. Images in the lower-
right show the last time step for each system at several iterations of our method, with red
lines indicating end effector trajectories.

2D insertion policy

3D insertion policy

swimming policy

3
?_';U.E- E‘;ﬂ_ﬂ, TN T R R . o e — 4|
c § c H o
o6 Sos b @ 3
@2 i A7 5
= ! L= : @
404 § 4.4 P Q2
Q T o c
= =2 ©
2 2 -t
o & 12
o
D 1 1] 1 1 1 1 {} 'l Il 1 1 'l 1 L Il
100 200 300 400 500 600 TOO BOO 100 200 300 400 500 600 YOO o 800 200 400 600 BOO 1000 1200 1400 1600
samples samples samples
walking policy

8

—e— CEM (100 samp)

—il— CEM (20 samp)

—
o
T

—e— RWR (100 samp)

—#— RWR (20 samp)

o

A |
e "N a_ o —— ours (20 samp)

8 /
~ B .,
AN - 4

distance }ravelled
o

=]

100 200 300 400 500

—— purs (with GMM, 5 samp)

\ \ E 11

samples

ST D,

i\
3

Figure 5: Comparison on neural network policies. For insertion, the policy was trained to

search for an unknown slot position on four slot positions (shown above). Generalization
to new positions is graphed with dashed lines. Note how the end effector (red) follows the
surface to find the slot, and how the swimming gait is smoother due to the stationary policy.

Figure 6: Tasks for linear-Gaussian controller evaluation: (a) stacking lego blocks on a fixed
base, (b) onto a free-standing block, (¢) held in both gripper; (d) threading wooden rings
onto a peg; (e) attaching the wheels to a toy airplane; (f) inserting a shoe tree into a shoe;
(g,h) screwing caps onto pill bottles and (i) onto a water bottle.

Figure 6: Tasks for linear-Gaussian controller evaluation: (a) stacking lego blocks on a fixed
base, (b) onto a free-standing block, (¢) held in both gripper; (d) threading wooden rings
onto a peg; (e) attaching the wheels to a toy airplane; (f) inserting a shoe tree into a shoe;
(g,h) screwing caps onto pill bottles and (i) onto a water bottle.

linear-Gaussian controller learning curves

=——s— |ego block (fixed) ——— {0y airplane
B —— —— . - - .
1290 block (free) shoe tree Figure 7: Distance to target point during
——e— |ego block (hand) = pill bottle
6 ===s===ring on peg === water bottle

training of linear-Gaussian controllers. The
actual target may differ due to perturbations.
Error bars indicate one standard deviation.

distance (cm)

[—————

5 10 15 20 25 30 35 40
samples

End-to-End Training of
Deep Visuomotor Policies

With Audio

End-to-End Training of
Deep Visuomotor Policies

Learned Visual Representations

With Audio

Terrain-Adaptive Locomotion Skills
Using Deep Reinforcement Learning

Xue Bin Peng, Glen Berseth, Michiel van de Panne*
University of British Columbia

Figure 1: Terrain traversal using a learned actor-critic ensemble. The color-coding of the center-of-mass trajectory indicates the choice of
actor used for each leap.

(s,a,r,s', u,A)

a
FSM ¥ :
> —>{ simulation
controller tuple
Y repla.’. .JI. —] | j.. - ﬂ
im stat actor | critic
bl ol MEMOTY| buffer buffer
5= (C,T) ' |
policy updates actor + critic
updates
a on policy with exploration
u=argmax, O, (s)] M=softmax,Q,(s) u : actor choice
a=A4,5) A ~ Ber(g,) A€40,1} : exploration
a=A,(s)+AN, choice

Figure 2: System Overview

Figure 3: 2/-link planar dog (left), and 19-link raptor (right).

back-stance extend

back foot front foot
contact contact

gather front-stance

Figure 4: Dog controller motion phases.

Similar to much prior work in physics-based character animation,
the motion i1s driven using joint torques and is guided by a finite
state machine. Figure 4 shows the four phase-structure of the con-
troller. In each motion phase, the applied torques can be decom-
posed into three components,

A policy is a mapping between a state space S and an action
space A, ie., w(s) : S — A. For our framework, S is a con-
tinuous space that describes the state of the character as well as the
configuration of the upcoming terrain. The action space A is repre-
sented by a 29D continuous space where each action specifies a set
of parameters to the FSM. The following sections provide further
details about the policy representation.

Prior to learning the policy, a small set of initial actions are created
which are used to seed the learning process. The set of actions
consists of 4 runs and 4 leaps. All actions are synthesized using

a derivative-free optimization process, CMA [Hansen 2006]. Two
runs are produced that travel at approximately 4 m/s and 2 m/s, re-
spectively. These two runs are then interpolated to produce 4 runs
of varying speeds. Given a sequence of successive fast-run cy-
cles, a single cycle of that fast-run is then optimized for distance
traveled, yielding a 2.5 m leap that can then be executed from the
fast run. The leap action is then interpolated with the fast run to
generate 4 parametrized leaps that travel different distances.

Figure 5: The character features consist of the displacements of
the centers of mass of all links relative to the root (red) and their
linear velocities (green).

1k
Iy

Figure 6: Terrain features consist of height samples of the terrain
in front of the character, evenly spaced S5cm apart. All heights are
expressed relative to the height of the ground immediately under
the root of the character.

Layer # 1 2 3 4 5 6 7

Figure 8: Schematic illustration of the MACE convolutional neu-
ral network. T' and C' are the input terrain and character features.
Each A, represents the proposed action of actor p, and Q, is the
critic’s predicted reward when activating the corresponding actor.

In reinforcement learning the reward function, r(s, a, s'), is used
as a training signal to encourage or discourage behaviors in the
context of a desired task. The reward provides a scalar value re-
flecting the desirability of a particular state transition that is ob-
served by performing action a starting in the initial state s and re-
sulting in a successor state s". Figure 7 is an example of a sequence
of state transitions for terrain traversal. For the terrain traversal
task, the reward is provided by

0, character falls during the cycle

r(s,a,s’) = s R gy

€ otherwise

where a fall i1s defined as any link of the character’s trunk making
contact with the ground for an extended period of time, v is the
average horizontal velocity of the center of mass during a cycle,
v" = 4m/s is the desired velocity, and w = 0.5 is the weight
for the velocity error. This simple reward is therefore designed
to encourage the character to travel forward at a consistent speed
without falling. If the character falls during a cycle, it 1s reset to a
default state and the terrain is regenerated randomly.

g, Ty ty, 1y tz, 1z tly, 13

Figure 7: Each state transition can be recorded as a tuple 7i =
(si,ai,ri,85). siis the initial state, a; is the action taken, s. is the
resulting state, and r; is the reward received during the ith cycle.

Average Distance Before Fall (m)

Performance vs Training Iterations

3500
MACE Mixed
3000 - Cacla Mixed
— Q Mixed
2500
2000+
1500+
1000} ,\/\N\l JW‘
{\Jﬁ“\f/\/u
u = 1 | | 1 1 |
0 50 100 150 200 250 300

Iterations (10°%)
(a) MACE(3) vs CACLA and Q-learning on mixed terrain

Contributions: In this paper we use deep neural networks in
combination with reinforcement learning (DeepRL) to address the
above challenges. This allows for the design of control policies
that operate directly on high-dimensional character state descrip-
tions (83D) and an environment state that consists of a height-field
image of the upcoming terrain (200D). We provide a parameter-
ized action space (29D) that allows the control policy to operate at
the level of bounds, leaps, and steps. We introduce a novel mixture
of actor-critic experts (MACE) architecture to enable accelerated
learning. MACE develops n individual control policies and their
associated value functions, which each then specialize in particular
regimes of the overall motion. During final policy execution, the
policy associated with the highest value function 1s executed, in a
fashion analogous to Q-learning with discrete actions. We show
the benefits of Boltzmann exploration and various algorithmic fea-
tures for our problem domain. We demonstrate improvements in
motion quality and terrain abilities over previous work.

Terrain-Adaptive Locomotion Skills using Deep
Reinforcement Learning

L.

Xue Bin Peng, Glen Berseth, Michiel van de Panne includes
University of Biritish Columbia audio

Flexible Muscle-Based Locomotion for Bipedal Creatures

Thomas Geijtenbeek™ Michiel van de Panne A. Frank van der Stappen
Utrecht University University of British Columbia Utrecht University

Andasmaatil

Figure 1: Physics-based simulation of locomotion for a variety of creatures driven by 3D muscle-based control. The synthesized controllers
can locomote in real time at a range of speeds, be steered to a target heading, and can traverse variable terrain.

LCE ; LSEE

Force-Velocity

Figure 2: Top: The three components of a Hill-type muscle. Bot-

tom: Normalized force-length and force-velocity relations of the
contractile element.

Figure 3: Muscle attachment points that will be optimized within a
constrained region. In this example, muscle point p; is constrained
to a 2D surface, muscle point p2 is constrained to a 3D volume, p3
is fixed, and p4 is constrained to a line. The actual areas used in
our experiments are shown in Figure 8.

Subject Parameters Section
Muscle physiology 3-30 * 3.1
Muscle geometry 12-39 * 3.3
State transition 3 4.1
Target features 14 4.2
Feedback control 1463 * 43,44
Initial character state 6 T

Table 1: Parameters subject to optimization. The number of pa-
rameters marked * is model dependent (see Table 3). T The param-
eters for initial character state are: initial forward lean, and initial

speeds for upper swing leg, lower swing leg (and foot), upper stance
leg, lower stance leg (and foot), and other bodies.

5 Optimization

Both our muscle model (Section 3) and control model (Section 4)
introduce a large number of free parameters, which are determined
through off-line optimization (see Table 1 for an overview). The
total set of parameters, K, is optimized using Covariance Matrix
Adaptation [Hansen 2006], with step size ¢ = 1 and population
size A = 20,

Objective The goal of our optimization process is to minimize
the error E(K), which consists of the following components:

E(K) == J—ﬁf|sy:)n|3ed o o J]—E;heev::l-::ﬁri + E_"hea.vufi‘\.-'efl + Eslide = = Eeﬂ'nrt (32)

Flexible Muscle-Based Locomotion
for Bipedal Creatures

SIGGRAPH ASIA 2013

Thomas Geijtenbeek
Michiel van de Panne
Frank van der Stappen

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

