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Figure 1: Our method learns visuomotor policies that directly use camera image observa-
tions (left) to set motor torques on a PR2 robot (right).



RGB image convi conv2 conv3 spatial softmax feature maotor

' ) points torques
w77 cony | o ers . el fully fully fully
stride 2 5x5 conv 5x5 conv expected connected [0 connected 1| connected
RelU RelLU RelLU 2D position RelU RelLU linear
a0 | |
: 17 113 109 64 40 40 7
7 109

robot
configuration
39

Figure 2: Visuomotor policy architecture. The network contains three convolutional lay-
ers, followed by a spatial softmax and an expected position layer that converts pixel-wise
features to feature points, which are better suited for spatial computations. The points are
concatenated with the robot configuration, then passed through three fully connected layers
to produce the torques.
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Figure 3: Diagram of our ap-
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T = {X1,u1,X2,U2,...,X7,ur}

The goal of a task is given by a cost function /(x;,u;), and the objective in policy search is
to minimize the expectation Er [ ;—; £(X¢, uy)], which we will abbreviate as E, ) [£(7)].
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Figure 4: Results for learning linear-Gaussian controllers for 2D and 3D insertion, octopus
arm, and swimming. Our approach uses fewer samples and finds better solutions than prior
methods, and the GMM further reduces the required sample count. Images in the lower-
right show the last time step for each system at several iterations of our method, with red
lines indicating end effector trajectories.
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Figure 5: Comparison on neural network policies. For insertion, the policy was trained to

search for an unknown slot position on four slot positions (shown above). Generalization
to new positions is graphed with dashed lines. Note how the end effector (red) follows the
surface to find the slot, and how the swimming gait is smoother due to the stationary policy.



Figure 6: Tasks for linear-Gaussian controller evaluation: (a) stacking lego blocks on a fixed
base, (b) onto a free-standing block, (¢) held in both gripper; (d) threading wooden rings
onto a peg; (e) attaching the wheels to a toy airplane; (f) inserting a shoe tree into a shoe;
(g,h) screwing caps onto pill bottles and (i) onto a water bottle.



Figure 6: Tasks for linear-Gaussian controller evaluation: (a) stacking lego blocks on a fixed
base, (b) onto a free-standing block, (¢) held in both gripper; (d) threading wooden rings
onto a peg; (e) attaching the wheels to a toy airplane; (f) inserting a shoe tree into a shoe;
(g,h) screwing caps onto pill bottles and (i) onto a water bottle.
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Terrain-Adaptive Locomotion Skills
Using Deep Reinforcement Learning

Xue Bin Peng, Glen Berseth, Michiel van de Panne*
University of British Columbia

Figure 1: Terrain traversal using a learned actor-critic ensemble. The color-coding of the center-of-mass trajectory indicates the choice of
actor used for each leap.
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Figure 2: System Overview

Figure 3: 2/-link planar dog (left), and 19-link raptor (right).
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Figure 4: Dog controller motion phases.

Similar to much prior work in physics-based character animation,
the motion i1s driven using joint torques and is guided by a finite
state machine. Figure 4 shows the four phase-structure of the con-
troller. In each motion phase, the applied torques can be decom-
posed into three components,

A policy is a mapping between a state space S and an action
space A, ie., w(s) : S — A. For our framework, S is a con-
tinuous space that describes the state of the character as well as the
configuration of the upcoming terrain. The action space A is repre-
sented by a 29D continuous space where each action specifies a set
of parameters to the FSM. The following sections provide further
details about the policy representation.



Prior to learning the policy, a small set of initial actions are created
which are used to seed the learning process. The set of actions
consists of 4 runs and 4 leaps. All actions are synthesized using

a derivative-free optimization process, CMA [Hansen 2006]. Two
runs are produced that travel at approximately 4 m/s and 2 m/s, re-
spectively. These two runs are then interpolated to produce 4 runs
of varying speeds. Given a sequence of successive fast-run cy-
cles, a single cycle of that fast-run is then optimized for distance
traveled, yielding a 2.5 m leap that can then be executed from the
fast run. The leap action is then interpolated with the fast run to
generate 4 parametrized leaps that travel different distances.



Figure 5: The character features consist of the displacements of
the centers of mass of all links relative to the root (red) and their
linear velocities (green).
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Figure 6: Terrain features consist of height samples of the terrain
in front of the character, evenly spaced S5cm apart. All heights are
expressed relative to the height of the ground immediately under
the root of the character.
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Figure 8: Schematic illustration of the MACE convolutional neu-
ral network. T' and C' are the input terrain and character features.
Each A, represents the proposed action of actor p, and Q, is the
critic’s predicted reward when activating the corresponding actor.



In reinforcement learning the reward function, r(s, a, s'), is used
as a training signal to encourage or discourage behaviors in the
context of a desired task. The reward provides a scalar value re-
flecting the desirability of a particular state transition that is ob-
served by performing action a starting in the initial state s and re-
sulting in a successor state s". Figure 7 is an example of a sequence
of state transitions for terrain traversal. For the terrain traversal
task, the reward is provided by

0, character falls during the cycle

r(s,a,s’) = s R gy

€ otherwise

where a fall i1s defined as any link of the character’s trunk making
contact with the ground for an extended period of time, v is the
average horizontal velocity of the center of mass during a cycle,
v" = 4m/s is the desired velocity, and w = 0.5 is the weight
for the velocity error. This simple reward is therefore designed
to encourage the character to travel forward at a consistent speed
without falling. If the character falls during a cycle, it 1s reset to a
default state and the terrain is regenerated randomly.

g, Ty ty, 1y tz, 1z tly, 13

Figure 7: Each state transition can be recorded as a tuple 7i =
(si,ai,ri,85). siis the initial state, a; is the action taken, s. is the
resulting state, and r; is the reward received during the ith cycle.
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Contributions: In this paper we use deep neural networks in
combination with reinforcement learning (DeepRL) to address the
above challenges. This allows for the design of control policies
that operate directly on high-dimensional character state descrip-
tions (83D) and an environment state that consists of a height-field
image of the upcoming terrain (200D). We provide a parameter-
ized action space (29D) that allows the control policy to operate at
the level of bounds, leaps, and steps. We introduce a novel mixture
of actor-critic experts (MACE) architecture to enable accelerated
learning. MACE develops n individual control policies and their
associated value functions, which each then specialize in particular
regimes of the overall motion. During final policy execution, the
policy associated with the highest value function 1s executed, in a
fashion analogous to Q-learning with discrete actions. We show
the benefits of Boltzmann exploration and various algorithmic fea-
tures for our problem domain. We demonstrate improvements in
motion quality and terrain abilities over previous work.
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Flexible Muscle-Based Locomotion for Bipedal Creatures

Thomas Geijtenbeek™ Michiel van de Panne A. Frank van der Stappen
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Figure 1: Physics-based simulation of locomotion for a variety of creatures driven by 3D muscle-based control. The synthesized controllers
can locomote in real time at a range of speeds, be steered to a target heading, and can traverse variable terrain.
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Figure 2: Top: The three components of a Hill-type muscle. Bot-

tom: Normalized force-length and force-velocity relations of the
contractile element.

Figure 3: Muscle attachment points that will be optimized within a
constrained region. In this example, muscle point p; is constrained
to a 2D surface, muscle point p2 is constrained to a 3D volume, p3
is fixed, and p4 is constrained to a line. The actual areas used in
our experiments are shown in Figure 8.



Subject Parameters Section
Muscle physiology 3-30 * 3.1
Muscle geometry 12-39 * 3.3
State transition 3 4.1
Target features 14 4.2
Feedback control 1463 * 43,44
Initial character state 6 T

Table 1: Parameters subject to optimization. The number of pa-
rameters marked * is model dependent (see Table 3). T The param-
eters for initial character state are: initial forward lean, and initial

speeds for upper swing leg, lower swing leg (and foot), upper stance
leg, lower stance leg (and foot), and other bodies.

5 Optimization

Both our muscle model (Section 3) and control model (Section 4)
introduce a large number of free parameters, which are determined
through off-line optimization (see Table 1 for an overview). The
total set of parameters, K, is optimized using Covariance Matrix
Adaptation [Hansen 2006], with step size ¢ = 1 and population
size A = 20,

Objective The goal of our optimization process is to minimize
the error E(K), which consists of the following components:

E(K) == J—ﬁf|sy:)n|3ed o o J]—E;heev::l-::ﬁri + E_"hea.vufi‘\.-'efl + Eslide = = Eeﬂ'nrt (32)
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