PIEYEY

Modern Robotics: Evolutionary Robotics
COSC 4560 / COSC 5560

Professor Cheney
4/20/18

learning value networks

Bellman Equation

» Value function can be unrolled recursively

R"(s,a) =E ["t+1 + Yy + Yreg3 + o | S, 3]
=Ey [r+7Q7(s',d) | s, a]

» Optimal value function Q*(s,a) can be unrolled recursively

Q*(s,a) = Ey [r +~ max Q*(s',a') | s, a]
af

» Value iteration algorithms solve the Bellman equation

Qi+1(s,a) = Ey [r + v max Qi(s',a") | s, a]
af

orid world:

each timestep has -1 reward GOAL!

the game terminates when
you reach a goal state

actions: N, S, E, W GOAL!

intuitive description: “get to the goal as soon as possible”
(but let's pretend we're a robot, who doesn't know this!)

each value function (V) is defined
with respect to some behavioral policy (1)
VT[

let's iteratively find V™ for a random policy
in our mini grid world

k

k

0

1

current value (V) for a random policy

001 00] 00| 0.0
001 00O] 00| 0.0
001 00O] 00| 0.0
00| 0O] 0.0 | 0.0

k

k

0

1

current value (V) for a random policy

001 00] 00| 0.0

001 00O] 00| 0.0

001 00O] 00| 0.0

00| 0O] 0.0 | 0.0
1

<

k

1

current value (V) for a random policy

00| 0O | 00 | 0.0

current
prediction
for
cumulative
immediate reward in
reward new state

N Y

N:V, =-1+0=-1
S: V. =-1+0=-1
E:V, =-1+0=-1
WiV, =-1+0=-1

with a random policy,
we are equally likely to take any move,
SO:

V=(1+-1+-1+-1)4=-1

k

k

0

1

current value (V) for a random policy

001 00] 00| 0.0
001 00O] 00| 0.0
001 00O] 00| 0.0
00| 0O] 0.0 | 0.0

1

<+

k

k

0

1

current value (V) for a random policy

0.0

0.0

0.0

0.0

-1.0

k

k

0

1

current value (V) for a random policy

001 00] 00| 0.0
001 00O] 00| 0.0
001 00O] 00| 0.0
00| 0O] 0.0 | 0.0
00|]-10]-10]| -1.0
-10|-10] -1.0 | -1.0
-10|-10] -12.0 | -1.0
-10 | -10 | -12.0 | 0.0

next iteration...
new value function
becomes
old value function
(“current prediction
for cumulative reward”)

k

k

1

2

current value (V) for a random policy

00| -10]| -10] -1.0
-10| -1.0| 1.0 | -1.0
-10|-10] -12.0| -1.0
-10 | -10 | -12.0 | 0.0

k

2

current value (V) for a random policy

-10|-10] -12.0| -1.0
-1.0]| -10]| -12.0 | 0.0
-1.75

NV, =-1+-1=-2
StV =-1+-1=-2
E: V,, =-1+0=-1
WV, =-1+-1=-2

V.= (-2+-2+-1+-2)/4=-1.75

k

k

1

2

current value (V) for a random policy

00| -10]| -10] -1.0
-10| -1.0| 1.0 | -1.0
-10|-10] -12.0| -1.0
-10 | -10 | -12.0 | 0.0
0.0 |-1.75] -2.0 | -2.0
-1.75] -20 | -20 | -2.0
-20 | -20 | -2.0 |-1.75
-20 | -20 |-1.75| 0.0

k

k

2

3

current value (V) for a random policy

00 |-1.75] -20 | -2.0
-1.75] -20 | -20 | -2.0
-20 | -=20 | -2.0 |-1.75
-20 | -20 |-1.75| 0.0
00 | -24]-29| -3.0
24 | -29 | -3.0 | -29
-29 | -3.0| -29 | -24
30| -29]| -24 | 0.0

k

=10

current value (V) for a random policy

00 | -61] -84] -9.0
-6.1 | -7.7 | -84 | -84
-84 | -84 | -7.7] -6.1
90| -84] -6.1| 0.0
00 | -14 | -20 | -22
-14 | -18 | -20 | -20
-20 | =20 | -18 | -14
22 | =20 | -14 | 0.0

converged to true

/

value function
(Vn-random)

greedy policy (r) for a this value function

current value (V) for a random policy

ViV v d ViV]é
AR EREENR AR EREENR
v vV ViV
Q Q Q Q < < < Q
@) @) @) o ~ ~ ~ o
o o o o Q < < <
o o o o
o o o o Q < < <
S| e |[e| = i I I
< < < < Q < < <
o o o o o i — —
o —
T I
i i

k=1

k=2

current value (V) for a random policy

greedy policy (r) for a this value function

00| -10]| -10] -1.0
-10| -1.0| 1.0 | -1.0
-10|-10] -12.0| -1.0
-10 | -10 | -12.0 | 0.0
0.0 |-1.75] -2.0 | -2.0
-1.75] -20 | -20 | -2.0
-20 | -20 | -2.0 |-1.75
-20 | -20 |-1.75| 0.0

<« 4—1—» 4—1—»
t «}» «}» «}»
NI
< r» < ¢—> <+ r» 1
<—I—> 4—1—» -

<+~ |« 4—1—»
t 4—f 4—1—» 1
! "1" gyt
4—1—» > >

k=2

k=3

current value (V) for a random policy

greedy policy (r) for a this value function

00 |-1.75] -20 | -2.0
-1.75] -20 | -20 | -2.0
-20 | -=20 | -2.0 |-1.75
-20 | -20 |-1.75| 0.0
00 | -24]-29| -3.0
24 | -29 | -3.0 | -29
-29 | -3.0| -29 | -24
30| -29]| -24 | 0.0

« |« |-
:"1"¢"¢
e B

T s
fJﬂ .
I ERER
t»-»—»

k=10

current value (V) for a random policy

greedy policy (r) for a this value function

00 | -61] -84] -9.0
-6.1 | -7.7 | -84 | -84
-84 | -84 | -7.7] -6.1
90| -84] -6.1| 0.0
00 | -14 | -20 | -22
-14 | -18 | -20 | -20
-20 | =20 | -18 | -14
22 | =20 | -14 | 0.0

4—
1) “
?
v
t,
4—
1) “
?
v
t,

Deep Q-Learning

» Represent value function by deep Q-network with weights w

Q(s,a,w) ~ Q" (s, a)

» Define objective function by mean-squared error in Q-values

e \ 7

Lw)=FE || r+vmax Q(s',a',w) — Q(s, a, w)
af

| \ target) i

» Leading to the following Q-learning gradient

0L(w)
ow

—E [(r +7 max Q(s', ", w) — Q(s, a, W)) 9Q(s, 3, W)]

ow

» Optimise objective end-to-end by SGD, using %

Stability Issues with Deep RL

Naive Q-learning oscillates or diverges with neural nets

1. Data is sequential
» Successive samples are correlated, non-iid
2. Policy changes rapidly with slight changes to Q-values

» Policy may oscillate
» Distribution of data can swing from one extreme to another

3. Scale of rewards and Q-values is unknown

» Naive Q-learning gradients can be large
unstable when backpropagated

Deep Q-Networks

DQN provides a stable solution to deep value-based RL

1. Use experience replay

» Break correlations in data, bring us back to iid setting
» Learn from all past policies

2. Freeze target Q-network

» Avoid oscillations
» Break correlations between Q-network and target

3. Clip rewards or normalize network adaptively to sensible range
» Robust gradients

Reinforcement Learning in Atari

’ -"" p— - -‘-“R_-. »

i 4 \ -,
7 \ \ ;

Y. -‘"-::_ ' & -‘\
state 4 i T action
o Vamn
\ -—‘ g) 4 /
s, | . X a,

| F'-_. {

DQN in Atari

» End-to-end learning of values Q(s, a) from pixels s

» Input state s is stack of raw pixels from last 4 frames
» Output is Q(s, a) for 18 joystick/button positions

» Reward is change in score for that step

32 4x4 filters 256 hidden units Fully-connected linear
I output layer
16 Bx8 filters
4x84x84
]
1
|
Stack of 4 previous) Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Network architecture and hyperparameters fixed across all games
[Mnih et al.]

Space Invaders

DQN controls the green laser cannon to clear
columns of space invaders descending from
the sky and also destroys two pink
motherships at the top of the screen

%000€ %000l %009 %00S %00F %00¢€ %002 %001 %0
| | m_ _.__ | | | | | | |

%0 | sbusasy sewnzajuop
Jewiee] Jeaul }seg *«—_ a3 sjeaud
%S | semneln
%9 || sugsoiy
%L|| spioseisy
%EL ||| uewoed ‘s
%L]| Buimog
Pzl | »una spgnog
%Sz | 1senbesg
%ze | =umusp
%zy | veny
%er | sepwy
%L N | prey seny
%S || isieH xyueg
%z9 | spedyuen
%9l | puewwo) saddoy)
%.9 | Jom jo prezn
%9 || suoz epeg

[oAs|-UBLINY MOjOq %69 I | xusisy
aAOqe 10 [aAS|-URWINY J %oL L /| oy3H

we. L | ves.0
%6L | AexooH s0)
%ze JE | umog puedn
%ee JIELE | Aqisqg Buysiy
%6 11| oinpus
%001 7| ond swiy
%zoL | Aemsauy
%zoL | LIS | seisew nd-Buny
w2z)| wewjueing
%6Ls ET || sepry weeg

%LZL | siepenu)| aoedg
Buog

puog sawer
siuua|
ooleBuey
Jauuny peoy
Jnessy

iy

SWeo) sy | aweN
Hoejy uowsqg
Jaydoo
Jaquui Azei
snuepy
juejoqoy
Jauung Jejs
inoxyealg
Buixog

liequid o8pIA

DQN Results in Atari

Policy Gradients

raw pixels hidden layer

p
ST

probability of
oving UP

7
/o

4 m

;“vr‘.:.‘_

XX
| '/ \ ~

Our policy network is a 2-layer fully-connected net.

h = np.dot(Wl, x)

h[h<®] = 0

logp = np.dot(W2, h)

p=1.0/ (1.0 + np.exp(-logp)) :

forward pass

Y

log probabilities

Supervised Learning
(correct label is provided)

-1.2 | -0.36
: block of differentiable compute ; correct action
image (e.g. neural net) gradients label = 0
1.0 0
- Wt
backward pass
forward pass Reinforcement Learning
» log probabilities
-1.2 |-0.36 | — sample an action:
, block of differentiable compute . sampled action = 1
image (e.g. neural net) P gradients
0 -1.0 Fd

A

backward pass

R eventual reward -1.0

Policy Gradients: Run a policy for a while. See what actions led to high rewards. Increase their probability:.

DOWN DOWN._. UP »@® \WIN

o o

LOSE
UP

LOSE
WIN

|

Cartoon diagram of 4 games. Each black circle is some game state (three example states are visualized on the bottom), and
each arrow is a transition, annotated with the action that was sampled. In this case we won 2 games and lost 2 games. With
Policy Gradients we would take the two games we won and slightly encourage every single action we made in that episode.
Conversely, we would also take the two games we lost and slightly discourage every single action we made in that episode.

Deriving Policy Gradients. I'd like to also give a sketch of where Policy Gradients come from mathematically.
Policy Gradients are a special case of a more general score function gradient estimator. The general case is that
when we have an expression of the form Exmp(mw) [f(x)] - i.e. the expectation of some scalar valued score
function f(x) under some probability distribution p(z; #) parameterized by some 6. Hint hint, f() will become
our reward function (or advantage function more generally) and p(m) will be our policy network, which is really a
model for p(a | I), giving a distribution over actions for any image I. Then we are interested in finding how we
should shift the distribution (through its parameters @) to increase the scores of its samples, as judged by f (i.e.
how do we change the network’s parameters so that action samples get higher rewards). We have that:

VoE. [f(z)] =V, Zp(m)f(:x:) definition of expectation
— Z Vop(z) f(z) swap sum and gradient
\Y%
=Y p(x) 9?(;:) f(z) both multiply and divide by p(x)
z p\x

- Zp(:r)Vg logp(x) f(x) use the fact that Vylog(z) = év.gz

= E,[f(z)Vylogp(x)] definition of expectation

raw pixels hidden layer

N\ probability of
b\ﬁ?&%‘ @ moving UP
E:&?&Lk.
S -
PR
AR

2N

Our policy network is a 2-layer fully-connected net.

On using PG in practice. As a last note, I'd like to do something | wish | had done in my RNN blog post. | think |
may have given the impression that RNNs are magic and automatically do arbitrary sequential problems. The
truth is that getting these models to work can be tricky, requires care and expertise, and in many cases could
also be an overkill, where simpler methods could get you 90%+ of the way there. The same goes for Policy
Gradients. They are not automatic: You need a lot of samples, it trains forever, it is difficult to debug when it
doesn't work. One should always try a BB gun before reaching for the Bazooka. In the case of Reinforcement
Learning for example, one strong baseline that should always be tried first is the cross-entropy method (CEM), a
simple stochastic hill-climbing “guess and check” approach inspired loosely by evolution. And if you insist on
trying out Policy Gradients for your problem make sure you pay close attention to the fricks section in papers,
start simple first, and use a variation of PG called TRPO, which almost always works better and more
consistently than vanilla PG in practice. The core idea is to avoid parameter updates that change your policy too
much, as enforced by a constraint on the KL divergence between the distributions predicted by the old and the
new policy on a batch of data (instead of conjugate gradients the simplest instantiation of this idea could be
implemented by doing a line search and checking the KL along the way).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

