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Fig. 1. Outline of the algorithm. The robot continuously cycles through action execution. (A and B)
Self-model synthesis. The robot physically performs an action (A). Initially, this action is random;
later, it is the best action found in (C). The robot then generates several self-models to match
sensor data collected while performing previous actions (B). It does not know which model is
correct. (C) Exploratory action synthesis. The robot generates several possible actions that
disambiguate competing self-models. (D) Target behavior synthesis. After several cycles of (A) to
(Q), the currently best model is used to generate locomotion sequences through optimization. (E)
The best locomotion sequence is executed by the physical device. (F) The cycle continues at step (B)
to further refine models or at step (D) to create new behaviors.




Fig. 2. The robot contin-
ually models and behaves.
The robot performs a ran-
dom action (A). A set of
random models, such as
(B), is synthesized into ap-
proximate models, such as
(€). A new action is then
synthesized to create max-
imal model disagreement
and is performed by the
physical robot (D), after
which further modeling
ensues. This cycle contin-
ues for a fixed peried or
until no further model
improvement is possible
(E and F). The best model
is then used to synthesize
a behavior. In this case,
the behavior is forward
locomotion, the first few
movements of which are
shown (G to I). This be-
havior is then executed by
the physical robot (] to L).
Next, the robot suffers
damage [the lower part
of the right leg breaks off
(M)]. Modeling recom-
mences with the best
model so far (N), and
using the same process
of modeling and experi-
mentation, eventually dis-
covers the damage (0).
The new model is used to
synthesize a new behav-
ior (P to R), which is ex-
ecuted by the physical
robot (S to U), allowing it
to recover functionality
despite the unanticipated
change.




Self-models. Before damage, candidate morphological models of the robot are encoded
as 16 parameters, which are used to construct a simulation of the robot: For each body
part the first parameter indicates which other body part it attaches to, and the second
parameter indicates where on the perimeter of that part it is attached. It is assumed that
the robot initially knows how many body parts it is composed of (nine), the size, weight
and mass of each part, and that negative commanded angles rotate body parts downward,
and positive angles upward. The numbers are used to construct a virtual robot inside a
three-dimensional dynamical simulator (S6). The virtual robot is induced to act by
supplying it with the same joint angles that were sent to the physical robot, and the
resulting two tilt angles are calculated for the main body by the simulator. The quality of
a model is estimated by determining how closely the virtual sensor data matches the two
tilt angles recorded from the physical device, for all actions that it has performed so far.
In previous work (52) we used other sensor types to determine which modalities were
most useful for inferring body topology, and it was found that tilt information is
sufficient, given the current experimental regime.



Models are optimized using a greedy random-mutation hill climber algorithm:
during the first pass through the model synthesis component (Fig. 2B), computation
begins with 15 random models, and the quality of each model is assessed. New models
are produced by copying the originals, introducing small random modifications, and re-
evaluating them. If the new model is more accurate than its original, it replaces it;
otherwise, it is discarded. This process is continued for 200 iterations, and the resulting
models are then transferred to the action synthesis component. Subsequent passes begin
with the best models from the previous pass. Each new pass uses all previous actions
performed by the physical robot for assessing model quality. In order to externally
determine the success of an experiment after termination, the error of the best model was
measured as the mean Euclidean distance between the centroid of each model body part,
and where the centroid should be (sample distances are shown for model 1 in Fig. S2);
this measure is not available to the robot during inference. Model disagreement was
measured as the mean Euclidean distance between body parts across all candidate models
at the end of an experiment (the greater the distance, the more disagreement).



Exploratory actions. An action is a set of desired joint angles that are sent to the robot’s
motors, causing it to move from one static pose to another. An action performed on the
physical robot takes 4 to 6 seconds. In the action synthesis component (Fig. 2A),
candidate actions are measured internally for how well they might extract new
information from the physical robot, which is determined as how much model
disagreement they cause, and how reliable they are. Disagreement is measured as the
mean square error between the two tilt angles across the optimized models when all
perform the same action. It has previously been shown that selecting tests which cause
model disagreement accelerates model optimization (21-24). Reliability is measured by
slightly altering each model, actuating each model pair using the action being considered,
and then assessing the degree of similarity between the resulting tilt in the original and
altered model pairs. Unreliable actions are those that would cause a similar but not
identical model to produce very different sensor data from the physical robot when both
perform the same action. These bifurcations provide further evidence for the nonlinear
relationship between motor commands and resulting sensor data. The space of possible
actions is restricted to actuating only one or two joints downward by 30 degrees and the
rest upward by 30 degrees. This ensures that the robot does not obtain information about
too many body parts at once, and that it does not assume extreme poses. The action
synthesis component selects the action from among these 36 possible actions which
induces maximum disagreement and reliability using the current models, but has not yet
been performed. We have found that it is possible for the proposed algorithm to uncover
test data that is too difficult for the modeling component to digest in its early stages if the
algorithm is allowed to perturb all test parameters in parallel. To combat this we have
proposed some additional algorithmic components that automatically tune the expected
difficulty produced by a candidate test (54,S5).
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Fig. S1. Behaviors generated using automatically-inferred self-models. A sample gait
synthesized by the intact robot (A) is shown running on the self-model, and its result on the
physical machine. The gait uses the lateral legs to provide support, while the forward and back
legs induce an undulatory motion along the direction of travel. After damage, a new self-model is
used to create a new gait (B). This gait also uses an undulatory motion, but this time along the
lateral legs; the asymmetry of the robot causes it to turn such that the undulatory motion again
travels along the line of action, as in the intact robot.
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Fig. S2. The best internal morphological models produced by each of the 30 experiments
using intelligent action synthesis. Thick colored lines indicate the placement of body parts in
the model. Dashed outlines indicate the actual location of the correspondingly-colored body parts
on the physical robot. Boxed images indicate experiments in which the topology was successfully
inferred (this knowledge is hidden from the robot). Successful inference of morphology is
measured by whether all of the body parts are attached to their correct proximal body parts. Thin
black lines on model 1 indicate the Euclidean distances between the positions of the model's body
parts and where they should be.
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Figure 2: The enhanced estimation-exploration al-
gorithm. The original algorithm is shown above the
dotted line; the mechanism for ‘managing challenge’
is shown below the line.
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COMPUTER SCIENCE

What Do Robots Dream 0f?

Christoph Adami

erhaps robots aren’t so different
from us after all. Like us, they =

need to constantly ascertain
where they are in the world, and
like us, they work better if they
have an accurate sense of self.
On page 1118 of this issue, Bon-
gard et al. (1) show that robots |
equipped with an algorithm that *
infers their own physical structure
from stored sensory data—dreams
of their prior actions, so to speak—
perform better in a simple forward
locomotion task than robots whose deci-
sions are not dream-inspired. Furthermore,
robots that use these self-models to plan
future actions can recover autonomously
from injuries, by adapting their gait to com-
pensate for the changed circumstances.
A robot’s most formidable enemy is an
uncertain and changing environment. Typi-
cally, robots depend on internal maps (either

The author is at the Keck Graduate Institute of Applied Life
Sciences, Claremont, CA 91711, USA. E-mail: adami@
kgi.edu

www.sciencemag.org SCIENCE VOL 314

provided or learned), and sen-
sory data to orient them-
selves with respect to
that map and to update
their location. If the
environment is chang-
ing or noisy, the robot
has to navigate under
uncertainty, and con-
stantly update the prob-
abilities that a particular
action will achieve a par-
ticular result. The situation
becomes even worse if the
robot’s own shape and configuration
can change, that is, if its internal model
becomes inaccurate. In most cases, such an
event constitutes the end of that particular
robot’s adventure.

Bongard et al. aim to improve a robot’s
robustness in an environment that may include
damage to the robot. At the beginning of a self-
modeling cycle, a four-legged robot without an
internal model of itself performs actions
(while on a flat surface), and records its own
response via tilt sensors and angle sensors in its

Robots that create and update internal models
of their own structure may be able to navigate
the world in a more robust way and provide a
test bed for models of self-awareness.

joints, The robot then computationally tests
candidate self-models, by re-imagining the
actions it just performed and comparing the
behavior of the model with its memory of the
results—that is, the robot tries to explain the
observed relationship between sensory data
and leg actuation by making assumptions
about its own configuration.

Even though the number of tested models
is comparatively small (by only allowing a
limited arrangement of limbs and their
length), it is easy to imagine that many mod-
els can end up explaining the recorded behav-
ior equally well (or equally badly). In the next
stage of the cycle, the robot uses these equiv-
alent models to find an action that would
serve as the best way to discriminate among
them. In other words, we could fancifully
imagine the robot thinking: “Well, these three
models all seem to work equally well with
what [ remember, but it seems to me that if |
stick what I think is one of my legs out just so,
then I can discover if I have a fourth leg or
not.”” To narrow the choice of models, the
robot then proceeds to test the action that pro-
vides the most information about the model’s
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Theory of Mind




Theory of Mind

first-order second-order

third-order
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Sally puts her
red ball . . .

Sally goes out of the room
and leaves Anne alone.

__@;ﬁ

Anne takes the ball out
of the basket . . .

and puts it in
i—— - __thebox.

When Sally comes back . .".
play with the

a Pk ball.

Where will Sally look for her ball?

she wants to



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

