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1) Motivation: There are several reasons for utilizing fitness
approximation through modeling.

— Reducing complexity: Many applications of evolutionary ~— Noisy fitness: Some fitness functions are very noisy. To
algorithms are in high-complexity or intractable domains, produce stable fitness rankings, algorithms typically av-
where the fitness calculation can be prohibitively time con- erage many evaluations, but this can greatly increase the
suming. For example, fitness modeling has been applied computational cost [29]. An alternative approach may be
to structural design optimization [1], [2], [21]-[25] that to develop a statistical model [30].

often requires time-consuming finite-element calculations.
Often the resolution provided by the exact fitness objective

. : — Smoothing landscapes: Almost all evolutionary domains
is unnecessary for evolutionary progress.

suffer from multimodal landscapes that are often dense
with local optima. Fitness approximation can greatly re-

— No explicit fitness: Many domains do not have a com- duce the frequency and severity of local optima. Landscape
putable fitness. For example, in human interactive evo- smoothing has been observed with interpolation, kernels,
lution [26] (e.g., evolution of art and music), a human and fitness clustering [24], [25], [31], [32].

user must select favorable individuals. Fitness models have
been applied in these domains to reduce user fatigue and
define a computable fitness landscape that can be searched,

while waiting for the user to give more feedback [11], [27],
[28].

— Promoting diversity: When models smooth fitness land-
scapes, they often flatten local optima or produce different
regions with similar fitness. While this is undesirable when
using a single model throughout evolution, it can be advan-
tageous for producing diversity as long as the fitness model
continuously adapts, as is proposed in this paper.



Subsample Fitness Predictors

1) Fitness Predictor Encoding: Training data in symbolic
regression typically consists of hundreds to thousands of data
points (e.g., experimental measurements) providing output
values for a sample of inputs. In our symbolic regression ex-
periments, the fitness predictor is a small subset of these points.
Instead of measuring the exact objective fitness of candidate
solutions, a subjective fitness is obtained by measuring the error
on the select handful of data points of a given fitness predictor.

The fitness predictor is encoded as a small array of indexes
to the full training data set (size discussed in the next section).
Each index in the predictor’s array is free to reference any points
in the training data examples and can repeatedly sample point if
it likes (thus over emphasizing an area). The predicted fitness is
calculated as

predicted_fitness(s) = :—EZ |s(x:) — yil
i=1

where s 1s a candidate solution (algebraic expression), x; and
1; are training data inputs and outputs in the training dataset
indexed by the predictor, and n is the number of samples in the
predictor.



Genetic Programming

1) heritability of trails
Genome = expression tree

2) genetic diversity through variation
Mutation = replace node/change weights
Crossover = swap sub-trees/activation functions

3) competition over scarce resources
Selection is separate from encoding
(our task = symbolic regressions)



Images are
generated
procedurally by
symbolic Lisp
expressions:

Phenotype:
(Image)

Genotype:
(Lisp code)

Color <= F(x,y)

(round (log (+ y (color-grad (round (+ (abs (round (log

(+ y (color-grad (round (+ y (log (invert y) 15.5)) x) 3.1
1.86 #(0.95 0.7 0.59) 1.35)) 0.19) x)) (log (invert y) 15.5))
x) 3.1 1.9 #(0.95 0.7 0.35) 1.35)) 0.19) x)



Genetic Programming Example:
Symbolic Regression

What function describes this data?

e ] 1 fo=exsin(x) .
5 = .
0 0

5 5
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Genetic Programming Example:

-Symbelie Regression

What function describes this data?

y=a*x+ b, solve for (a, b) given (X, y)
y=a*x?+b*x+c, solve for (a, b, ¢) given (X, y)
y=a*x®+b*x?2+c*x+d, solve for (a, b, c, d) given (x, y)

y =a+ sin(x)?* (b / c) * log(x), solve for (a, b, c) given (X, y)



Genetic Programming Example:
Symbolic Regression

What function describes this data?

y=?2?222?...,solve for (2,2, 2, ... ) given (X, y)



Genetic Programming Example:
Symbolic Regression

Building Blocks: + - * / sin cos exp log ... etc

f(x)

tput
, do li'n_ N [ o [ ~ o oo
T T T T T T T
-




Genetic Programming Example:

f(x)

x2

Symbolic Regression

Building Blocks: + -

output

, do o N [ o [ ~ o oo
.
T al T T T T T T
-

* [ sin cos exp log ... etc

| sin(x2)



x1

Genetic Programming Example:
Symbolic Regression

Building Blocks: + - * / sin cos exp log ... etc

f(x)

o
T

AN

x2

| sin(x2)

1 xI*sin(x2)

tput
, do li'n_ N [ o [ ~ o oo
T T T T T T T
-




Genetic Programming Example:
Symbolic Regression

Building Blocks: + - * / sin cos exp log ... etc

f(x)

| sin(x2)
*+ 1 x1*sin(x2)

(x1 - 3)*sin(x2)

x1 3 x2

tput
o o = k2 (=) ra = o (mn)




Genetic Programming Example:
Symbolic Regression

Building Blocks: + - * / sin cos exp log ... etc

f(x)

Ta

| sin(x2)
1 x1*sin(x2)

(x1 - 3)*sin(x2)

(x1 - 3)*sin(-7 + x2)

x1 3 ED

x2 -7

tput
, do o N [ o [ ~ o oo
.
al T T T T T T
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M Experiment
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Fig. 1. An illustration of a trade-off between fidelity (approximation accuracy)
and computational cost. Usually, high-fidelity fitness evaluations are more time-
consuming. By contrast, low-fidelity fitness evaluations are often less time-
consuming.



1) Fitness Predictor Encoding: Training data in symbolic
regression typically consists of hundreds to thousands of data
points (e.g., experimental measurements) providing output
values for a sample of inputs. In our symbolic regression ex-
periments, the fitness predictor is a small subset of these points.
Instead of measuring the exact objective fitness of candidate
solutions, a subjective fitness is obtained by measuring the error
on the select handful of data points of a given fitness predictor.

New fitness trainers are chosen from the solution population
periodically. Fitness trainers are solutions that the fitness pre-
dictors optimize to predict. In our implementation, we choose a
new trainer to add to the trainer population every 100 fitness pre-
dictor population generations. This augmentation of the trainer
population provides time for the fitness predictors to adjust their
approximation and is related to the speed at which predictors
converge. Alternatively, new trainers could be selected contin-
uously, or whenever the progress of the predictor population
slows.



The objectives for each population are summarized below,
where asterisks specify an optimal result that is being searched
for in each population

Gl argma;cpbegt(s) (Solutions)
% 2
b= = argImax N Z (p(s) — p(s))? (Trainers)
pEFcur
pre = argn mm Z |fitness(t) — p(t)| (Predictors)
fET-:ur

where S is the set of all problem solutions, S, is the current
solution population, P is the set of all possible fitness predic-
tors, P, 1s the current predictor population, 7., is the current
trainers population, Ppest 18 the highest ranked predictor in F,;,
and }'TS) 1s the average predicted fitness of solution s among the
current predictors. It is important to note that all three popula-
tions are evolved in parallel and their objectives will be dynamic
and changing over each generation.



To summarize the framework, the solution population evolves
to maximize the fitness of the current best fitness predictor.
Trainers are solutions chosen from the solution population that
produce the most variance in predictions among the predictor
population. The fitness predictor population evolves to mini-
mize the difference between exact and predicted fitnesses of the
current population.



Candidate models ’ Candidate tests

dx ; dx x i
—_——7 = ] —_—— —_ ——
i=—:t+i_ £=—si.ny ,'{ . ' ="~
dt G d oA me - Tme L
? 4 initial
%= _3J’+i d_:= —y™ +log x conditions . i r——y
= E ¥V -
d : - ¥
dy__ & L ‘[ - —
Nt EL dr dx time b time i
b The inference prm:es& //E The inference process
generates several different generates several possible
ot et emoer s [LInference Process | o e
collected while performing models (make them disagree
previous tests. It does not in their predictions).
know which model is correct” g T Y 0
Initial
Qutputs Conditions
(sensors) (actuators)
- !/ e

d The inference process physically performs an
experiment by setting initial conditions, penurbing the
hidden system and recording time series of its behavior.
Initially, this experiment is random; subsequently, it is the
best test generated in step c.

Fig.1. A conceptdiagramshowing flow of the interrogation algorithm. The
cycle (a, b, ¢) is repeated until a fixed period has elapsed. The dotted arrow in
¢ represents the divergence between two models' predictions about the
future behavior of state variable y. The best test from c that is executed on the
physical system is the set of initial conditions that causes the models to
disagree the most in their predictions (marked by an asterisk). The framework
converges on accurate models by gradually accumulating information about
the system from a series of internally generated, intelligent tests. By period-
ically discarding older tests and replacing them with newer ones, the algo-
rithm cannot only model static systems, but continuously track changing
systems by producing models of its current state.



Point Usage in Predictor
g ¥
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Fig. 4. Histogram of training samples selected by the best fitness predictor
during evolution to convergence of f = el®l sin( x). Some samples are selected
significantly more often that others.



TABLE I
SUMMARY OF THE COMPARED FITNESS PREDICTION STRATEGIES

0
Strategy Sample Size Sample Selection Method
Coevolved Predictor Sample 8 Evolved subset =560 -
Static Random Sample 8 Random subset chosen at runtime = 100
-1
Dynamic Random Sample 8 Changing random subset E
Exact Fitness 200 Use all training data :I.," -150
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TABLE I
SUMMARY OF THE COMPARED FITNESS PREDICTION STRATEGIES

Strategy Sample Size Sample Selection Method
Coevolved Predictor Sample 8 Evolved subset
Static Random Sample 8 Random subset chosen at runtime
Dynamic Random Sample 8 Changing random subset
Exact Fitness 200 Use all training data
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EXAMPLES OF RANDOMLY GENERATED FUNCTIONS AND THEIR COMPLEXITIES

Random Function Complexity
Ax)=x 1
fixy=x"—x 5
fix) = sin{cos(x))-(exp(x) - cos(x)) 1
Ax) = expl(lx| + exp(x))){(exp(x) + sin{x)) - [(x/x)) 23
fix) = log(cos(x + (exp(sin{x)-[x[)- (sin{x-log(x)) + exp(cos(x)))))) 37
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Fig. 9. The percent of successful convergence after 10 M point evaluations
versus the target function complexity (the number of nodes in the binary ex-

pression tree).




Reducing Bloat

35
33 i
31 %__%-TH}; TT 1
%‘ 29 . N J.__T\;/j‘_\;[ T 1 1
c 27T 1/J. 1 L L L\Vl\[ A
® L
o 29 b4
% an
§ %] /
3 21
m -
19 . —-o—i’.':oevolution!
17 | —x— Exact |
15 . . . . p— ; . r
0 5000 10000 15000

Generations

Fig. 12. The size of the best solution during evolution of f5( x) averaged over
100 test runs. Error bars show the standard error.



Distilling Free-Form Natural Laws
from Experimental Data
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© coltect experimental © numerically calculate
data from physical system partial derivative for every
{e.g. pendulum time series) pair of variables
f=(x=1.12)-cos(y)
S =091-exp(y/z)
. =05y =9.8.cos(x)
f=z+9.8-sin(x) f .
- Generate candidate
f =05y -9.8-cos(x) symbolic functions. Initially
these are random; later they
are small variations of best
omn predictive ability equations selected in (5)
reaches sufficient
accuracy, return the most . /] il ;"’"
—[ f]|= y+sin{x)—
parsimonious equations g ?E-.- Exhioes Y p %
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Axly  Oxlyy Equations 6—{ = a— 8
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© compare predicted fix) g
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numerical partial derivatives eﬂuﬂmmlu ufur:llblu
(2). Select best equations. for each candidate function
B SO0y =4.771(3.714 - &”) + cos(#)
+(3.714 - @) cos(@)
(0) €= load [3.714]
(1) €= load [wm]
(2) €= mal (1), (1)
(3) <= sab (0), (2)
(4) <= load [#]
(3) <= cos (4)
(6) <= mul (3), (5)
(7) <- load [4.771]
(B) €= mmal (7), (3)
{9) <= add {8), (5)
(10) <- add (9), (6)



Schematic Experimental Data

Physical System

e

BE M ME

Time (s)

T

Inferred Laws

114.28V + 692.32x°

Hamiltonian
Vv —6.04x°
Lagrangian

a—0.008v — 6.02x

Equation of motion

-142.19x, — 74.65x, + 0.12x,” —
1.89x,x5 — 1.51x,° — 0.49v,” +
0.41v,v, — 0.082v,’
Lagrangian

1.37-w” + 3.29-cos(6)
Lagrangian
2.71a + 0.054w — 3.54sin(6)

Equation of motion

(x — 77.72)* + (v — 106.48)’

Circular manifold

wlg o p 0.32&}22 —
124.13cos(8,) — 46.82cos(6,) +
0.82&)|£ﬂ3¢0$(6; ~ 93}

Hamiltonian

Fig. 3. Summary of laws inferred from experimental data collected from  the algorithm detects position manifolds; given velocities, the algorithm detects
physical systems. Depending on the types of variables provided to the energy laws; given accelerations, it detects equations of motion and sum of
algorithm, it detects different types of laws. Given solely position information,  forces laws (8, angle; o, angular velocity; o, angular acceleration).
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Fig. 4. Parsimony versus accuracy and computation time. (A) Pareto front
(solid black curve) for physical laws of the double pendulum and the
frequency of sampling during the law equation search (grayscale). The
equation at the cliff corresponds to the exact energy conservation law of
the double pendulum (highlighted in the figure). A second momentum
conservation law that we encountered is also highlighted. (B) Computation

10-'[_

102

Time to Detect Solution [hours]

10

time required to detect different physical laws for several systems. The
computation time increases with the dimensionality, law equation complexity,
and noise. A notable exception is the bootstrapped double pendulum, where
reuse of terms from simpler systems helped reduce computational cost by
almost an order of magnitude, suggesting a mechanism for scaling higher
complexities.
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