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Fig. 1. An illustration of a trade-off between fidelity (approximation accuracy)
and computational cost. Usually, high-fidelity fitness evaluations are more time-
consuming. By contrast, low-fidelity fitness evaluations are often less time-
consuming.
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Fig. 4. Examples of surrogates that have a large approximation error but are
adequately good for evolutionary search. Solid curves denote the original function
and dashed curves are their approximation.
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Coevolution of Fitness Predictors

Michael D. Schmidt and Hod Lipson, Member, IEEE



1) Motivation: There are several reasons for utilizing fitness
approximation through modeling.

— Reducing complexity: Many applications of evolutionary ~— Noisy fitness: Some fitness functions are very noisy. To
algorithms are in high-complexity or intractable domains, produce stable fitness rankings, algorithms typically av-
where the fitness calculation can be prohibitively time con- erage many evaluations, but this can greatly increase the
suming. For example, fitness modeling has been applied computational cost [29]. An alternative approach may be
to structural design optimization [1], [2], [21]-[25] that to develop a statistical model [30].

often requires time-consuming finite-element calculations.
Often the resolution provided by the exact fitness objective

. : — Smoothing landscapes: Almost all evolutionary domains
is unnecessary for evolutionary progress.

suffer from multimodal landscapes that are often dense
with local optima. Fitness approximation can greatly re-

— No explicit fitness: Many domains do not have a com- duce the frequency and severity of local optima. Landscape
putable fitness. For example, in human interactive evo- smoothing has been observed with interpolation, kernels,
lution [26] (e.g., evolution of art and music), a human and fitness clustering [24], [25], [31], [32].

user must select favorable individuals. Fitness models have
been applied in these domains to reduce user fatigue and
define a computable fitness landscape that can be searched,

while waiting for the user to give more feedback [11], [27],
[28].

— Promoting diversity: When models smooth fitness land-
scapes, they often flatten local optima or produce different
regions with similar fitness. While this is undesirable when
using a single model throughout evolution, it can be advan-
tageous for producing diversity as long as the fitness model
continuously adapts, as is proposed in this paper.



Subsample Fitness Predictors

1) Fitness Predictor Encoding: Training data in symbolic
regression typically consists of hundreds to thousands of data
points (e.g., experimental measurements) providing output
values for a sample of inputs. In our symbolic regression ex-
periments, the fitness predictor is a small subset of these points.
Instead of measuring the exact objective fitness of candidate
solutions, a subjective fitness is obtained by measuring the error
on the select handful of data points of a given fitness predictor.

The fitness predictor is encoded as a small array of indexes
to the full training data set (size discussed in the next section).
Each index in the predictor’s array is free to reference any points
in the training data examples and can repeatedly sample point if
it likes (thus over emphasizing an area). The predicted fitness is
calculated as

predicted_fitness(s) = :—EZ |s(x:) — yil
i=1

where s 1s a candidate solution (algebraic expression), x; and
1; are training data inputs and outputs in the training dataset
indexed by the predictor, and n is the number of samples in the
predictor.
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