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Evolution of Development



CPPNs: “Regularity without Development”
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[Newman and Bhat, 2008]








What does physical development buy us?

Is it worth the cost?
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Wolff's Law

“"Every change in the form and function of bones, or of their
function alone, is followed by certain definite changes in their
internal architecture and equally definite secondary alteration in
their external conformation, in accordance with mathematical
laws." Julius Wolff (1892)

—

Human Anatomy, Second Edition, C.V.
Mosby Company, 1976
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Figure 2: Example of a developmental process. The
panels (a-g) show the development of the animat in
Fig. 7Tb, 6a at indicated simulation time steps, (d)
shows cells that have just divided, but were not yet
pushed away by physical forces, this process took
about 30 time steps (e). Cells are represented as
circles, short lines indicate the direction of the ori-
entation vector.











Development is guided by diffusive substances, which in-
clude not only the three maternal morphogens, but also mor-
phogens which can be produced by cells. In our simplified,
grid-less diffusion model, the level of a diffusing product at
a given location is a function of distance and the historic
concentration of this morphogen at its source.

Cell division occurs when the level of a product coded by
the special element associated with this action reaches the
threshold of 0.9. Each cell maintains its orientation vector,
used to determine the direction towards which a new cell will
be placed at division. The daughter cells inherit all the TF
concentrations and the direction of the orientation vector
from their mothers. At division, the daughter is placed in
close proximity to the mother, and the orientation vector
of the daughter is rotated proportionally to the activation
level of the associated GRN output (maximum expression,
1, corresponds to a rotation angle of 27). If a mother cell
expresses the gene responsible for size increase, the radius
of a new cell may be up to 50% larger. We enforced a hard
limit for the size of the embryo of 32 cells, with the exception
of one series of evolutionary runs in which up to 64 cells were
allowed. This limitation can be seen as stemming from the
strict limits on the resources available to the embryo.



Special elements, which encode the inputs and outputs of
the GRN, are treated like TFs (for inputs) or like if they
were regulatory units with one gene (for outputs). The ac-
tivation of outputs is determined by the concentration of
TFs that have affinity to a particular special element. The
model includes six cellular actions, associated with outputs:
cell division, cell rotation, modification of cell size (which
affect development), and three actions that modify oscilla-
tion parameters (which affect movement; explained below).
Four inputs can be used: a signal of “1” (a TF with a con-
stant maximum concentration; this is similar to a bias input
in neural networks), and three substances (“maternal mor-
phogens”) diffusing from three sources in the 2-D physical
space in which development occurs. Evolution determines
what inputs and outputs are actually used in a given GRN.

Product concentrations are updated in discrete time steps.
First, activation of each promoter of the given regulatory
unit is calculated as a weighted sum of concentrations of
products which have affinity to this promoter. Then, the
sum of the activities of all the promoters is used to calcu-
late the rate at which products of this regulatory unit are
produced or degraded:

(1)

where At is the time step (0.05 was used), L is the current
concentration of the product, and A is the sum of activa-
tion of all promoters for this regulatory unit. The formula
ensures that all product concentrations remain within [0, 1).

AL = (tanh % — L)At
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Figure 1: The structure of the genetic elements and
the linear genome. Each element consists of a type
field (the numbers in parenthesis in the descriptions
below the graph indicate types), a sign field, and
an ordered set of N real values which is used to
determine affinity to other elements; N = 2 was used
in this paper.
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Figure 1: The seed genome (A) and the corresponding gene
regulatory network (GRN; B). The genome consists of 27
elements (the value of the modifier, the coordinates in 2D
sequence space are listed on the right): 8 external factors
(the first 4 are positional factors, with 3 coordinates in 3D
developmental space), only 2 of which are connected to the
GRN, and 9 effectors, of which only 5 are connected, and 6
genes in 4 regulatory units.




Figure 5: The GRN controlling the development of a asym-
metrical dumb-bell shape in Fig. 2B. Dashed lines corre-
spond to excitatory connections.



t=302 t=303

t=543

(b)
t=1 t=166 t=436 t=800

Figure 1: Example snapshots from development of 2 em-
bryos (blue cells) evolved to produce cross shape, overlaid
on the target to which embryos would be compared during
evaluation (gray). (a) the system allowed for unconstrained
cellular divisions whenever an associated output crossed a
threshold, the final shape is a result of repeated subtractive
process: apoptosis removing excess cells; (b) cell divisions
were constrained to non occupied space, evolved shape is a
result of an additive assembly. Brightly colored cells have
their division signal above the threshold.
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Figure 2: Example of a developmental process. The
panels (a-g) show the development of the animat in
Fig. 7b, 6a at indicated simulation time steps, (d)
shows cells that have just divided, but were not yet
pushed away by physical forces, this process took
about 30 time steps (e). Cells are represented as
circles, short lines indicate the direction of the ori-
entation vector.
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Figure 3: Algorithmic transformation of a set of

points into the structure of the animat:

a Gabriel graph (final

triangulation, (c)

Delaunay
structure).
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Figure 7: Example of evolved cell oscillation phase
shifts. Panel (a): the individual in Fig. 4a, (b): in
Fig. 6a, (c): in Fig. 5a. All animats are displayed
in their initial, equilibrium states. Color range is
normalized on each picture and the maximum value
of phase shift in each individual (corresponding to
the red node) is indicated.
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Harnessing evolutionary creativity:

evolving soft-bodied animats in simulated
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