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Elite

High-dimensional space

Fig. 1. The MAP-Elites algorithm searches in a high-dimensional space
to find the highest-performing solution at each point in a low-dimensional
feature space, where the user gets to choose dimensions of variation of in-
terest that define the low dimensional space. We call this type of algorithm
an “illumination algorithm”, because it illuminates the fitness potential of
each area of the feature space, including tradeoffs between performance
and the features of interest. For example, MAP-Elites could search in the
space of all possible robot designs (a very high dimensional space) to find
the fastest robot (a performance criterion) for each combination of height
and weight.



procedure MAP-ELITES ALGORITHM (SIMPLE, DEFAULT VERSION)

(P+0,&X «0) > Create an empty, N-dimensional map of elites: {solutions X’ and their performances P}
foriter =1 — I do > Repeat for I iterations.
if iter < GG then o Initialize by generating G random solutions
x’ ¢+ random_solution()
else > All subsequent solutions are generated from elites in the map
x +— random _selection(.X") > Randomly select an elite x from the map X
x’ + random _variation(x) > Create z', a randomly modified copy of = (via mutation and/or crossover)
b’ «feature_descriptor(x’) > Simulate the candidate solution =" and record its feature descriptor b’
p’ +performance(x’) > Record the performance p" of z'
if P(b") =0 or P(b’) < p then > If the appropriate cell is empty or its occupants’s performance is < p’, then
P(b') «p’ > store the performance of ' in the map of elites according to its feature descriptor b’
X(b') «x’' > store the solution x' in the map of elites according to its feature descriptor b’

return feature-performance map (P and X)

Fig. 2. A pseudocode description of the simple, default version of MAP-Elites.



Criteria for Measuring the Algorithms

Global Performance: For each run, the single highest-
performing solution found by that algorithm anywhere in
the search space divided by the highest performance possi-
ble in that domain.

Global reliability: For each run, the average across all cells
of the highest-performing solution the algorithm found for
each cell (0 if it did not produce a solution in that cell) di-
vided by the best known performance for that cell as found
by any run of any algorithm.

Precision (opt-in reliability): For each run, if (and only if)
a run creates a solution in a cell, the average across all such
cells of the highest performing solution produced for that cell
divided by the highest performing solution any algorithm
found for that cell.

Coverage: Measures how many cells of the feature space a
run of an algorithm is able to fill of the total number that are
possible to fill.



Search space 1: neural networks
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Global performance Reliability Precision
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Global performance Reliability Precision Coverage
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Simulated soft, locomoting robot morphologies
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Robots that can adapt like animals

Antoine Cully,"* Jeff Clune,® Danesh Tarapore,"* Jean-Baptiste Mouret' —**



THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

Back on its feet

Using an intelligent trial-and-error learning
algorithm this robot adapts to injury in minutes
PAGES 426 & 503
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Goal: Fast, straight walking
15 trial

0.11 m/s
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Learning guided by self-knowledge

Compensatory behavior

Figure 1| With Intelligent Trial and Error, robots, like animals, can quickly adapt to recover from damage. (A) Most animals can find a compen-
satory behavior after an injury. Without relying on predefined compensatory behaviors, they learn how to avoid behaviors that are painful or no longer
effective. (B) An undamaged, hexapod robot. (C) One type of damage the hexapod may have to cope with (broken leg). (D) After damage occurs, in
this case making the robot unable to walk straight, damage recovery via Intelligent Trial and Error begins. The robot tests different types of behaviors
from an automatically generated map of the behavior-performance space. After each test, the robot updates its predictions of which behaviors will
perform well despite the damage. This way, the robot rapidly discovers an effective compensatory behavior.
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Extended Data Figure 1 | An overview of the Intelligent Trial and Error Algorithm. (A) Behavior-performance map creation. After being
initialized with random controllers, the behavioral map (A2), which stores the highest-performing controller found so far of each behavior type,
is improved by repeating the process depicted in (Al) until newly generated controllers are rarely good enough to be added to the map (here,
after 40 million evaluations). This step, which occurs in simulation, is computationally expensive, but only needs to be performed once per robot
(or robot design) prior to deployment. In our experiments, creating one map involved 40 million iterations of (A1), which lasted roughly two
weeks on one multi-core computer (Supplementary Methods, section “Running time”). (B) Adaptation. (B1) Each behavior from the behavior-
performance map has an expected performance based on its performance in simulation (dark green line) and an estimate of uncertainty regarding
this predicted performance (light green band). The actual performance on the now-damaged robot (black dashed line) is unknown to the algorithm.
A behavior is selected to try on the damaged robot. This selection is made by balancing exploitation—trying behaviors expected to perform well—
and exploration—trying behaviors whose performance is uncertain (Methods, section “acquisition function”). Because all points initially have equal,
maximal uncertainty, the first point chosen is that with the highest expected performance. Once this behavior is tested on the physical robot (B4),
the performance predicted for that behavior is set to its actual performance, the uncertainty regarding that prediction is lowered, and the predictions
for, and uncertainties about, nearby controllers are also updated (according to a Gaussian process model, see Methods, section “kernel function”),
the results of which can be seen in (B2). The process is then repeated until performance on the damaged robot is 90% or greater of the maximum
expected performance for any behavior (B3). This performance threshold (orange dashed line) lowers as the maximum expected performance (the
highest point on the dark green line) is lowered, which occurs when physical tests on the robot underperform expectations, as occurred in (B2).
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Robots that can adapt like animals
Nature, 2015

which describes damage recovery via Intelligent Trial and Error
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Innovation Engines: Automated Creativity and Improved
Stochastic Optimization via Deep Learning

Anh Nguyen Jason Yosinski Jeff Clune

University of Wyoming Cornell University _University of Wyoming
anguyen8@uwyo.edu yosinski@cs.cornell.edu jeffclune@uwyo.edu



Convolutional Neural Networks: AlexNet

* Lion

Image labels
Krizhevsky, Sutskever, Hinton — NIPS 2012

le credit Jason Yosinsk
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ImageNet Challenge
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black panther race car parot coffee pot
mask [ ] racer toucan | cup
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latte sea fly red crayon
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CD player T seashore || ground beetle _' syringe
stethoscope —| sandbar | rhinoceros beetle || | maraca
Figure 3: CPPN-encoded images evolved and

named (centered text) by Picbreeder.org users. The
DNN'’s top three classifications and associated confi-
dence (size of the pink bar) are shown. The DNN'’s
classifications often relate to the human breeder’s

label, showing that DNNs can recognize CPPN-
encoded, evolved images. Adapted from [21].
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Figure 4: The MAP-Elites evolutionary algorithm
produces images that the DNN declares with high
confidence to belong to most ImagelNet classes. Col-
ors represent median confidence scores from 10 runs.
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Figure 8: Innovation Engines built with MAP-Elites
or Novelty Search perform similarly to each other,
and both significantly outperform a single-class evo-
lutionary algorithm. Solid lines show median per-
formance and shaded areas indicate the 95% boot-
strapped confidence interval of the median. The
bottom three rows show statistical significance.
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Figure 5: Innovation Engines in the image domain
generate a tremendous diversity of interesting im-
ages. Shown are images selected to showcase diver-
sity from 10 evolutionary runs. The diversity results
from the pressure to match 1000 different ImageNet
classes. In this and subsequent figures, the DNN'’s
top label for each evolved image is shown below it.
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