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Figure 5: Stiffer robots tend to employ significantly more
shrinking voxels than softer ones (p < 0.002), in the attempt
to actively control the shape.



Deceptive Fitness Landscapes
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Figure 1: Maze Navigating Robot. The artificial neural network that controls the maze
navigating robot is shown in (a). The layout of the sensors is shown in (b). Each arrow outside
of the robot’s body in (b) is a rangefinder sensor that indicates the distance to the closest
obstacle in that direction. The robot has four pie-slice sensors that act as a compass towards
the goal, activating when a line from the goal to the center of the robot falls within the pie-slice.
The solid arrow indicates the robot’s heading.
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Hard Map Fitness




Abandoning Objectives: Evolution through the
Search for Novelty Alone

Joel Lehman and Kenneth O. Stanley



A simple measure of sparseness at a point is the average distance to the k-nearest
neighbors of that point, where £ is a fixed parameter that is determined experimen-
tally. If the average distance to a given point’s nearest neighbors is large then it is in
a sparse area; it is in a dense region if the average distance is small. The sparseness
p at point z is given by

1 k
plz) = 2 ) dist(z, pa), (1)

1=0

where (; is the ith-nearest neighbor of = with respect to the distance metric dist,
which is a domain-dependent measure of behavioral difference between two indi-
viduals in the search space. The nearest neighbors calculation must take into con-
sideration individuals from the current population and from the permanent archive
of novel individuals. Candidates from more sparse regions of this behavioral search
space then receive higher novelty scores. It is important to note that this behavior



Hard Map Novelty




[Methenitis et al 2015]
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(b) Hard Map
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[Methenitis et al 2015]
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novelty search solved the maze only five times out of 100, which is not significantly
better than fitness-based NEAT, which solved the maze two times out of 100. This
result confirms the hypothesis that constraining the space of possible behaviors is
important in some domains for novelty search to be efficient. However, fitness fares
no better, highlighting that fitness-based search is not necessarily a viable alternative
even when novelty search is not not effective.
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