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Why Evolve Moprhologies?
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we can ask ask questions about the different
types of behavioral strategies that arise,
investigating how embodiment affects behaviors




Morphological change in machines accelerates
the evolution of robust behavior

Josh Bongard'
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Fig. 3. How morphological change affects
the time to discovery of the desired beha-
vior in the quadruped (A and B) and hexa-
pod (C and D) robot. Light gray bars
indicate the number of controllers that
had to be evaluated when no morphologi-
cal change was allowed. Dark gray bars in-
dicate the discovery time when the robots’
body plans did not change during a robot’s
lifetime, but did change over evolutionary
time. Black bars indicate the discovery time
when body plans changed during each
robot’s lifetime, and also over evolutionary
time. The dark gray and black bars in A and
C report the impact of changing the robot’s
body plans parametrically; the dark gray
and black bars in B and D report the impact
of changing the robot's body plans topolo-
gically. Asterisks report statistically signifi-
cant differences between no morphological
change and topological, ontogenetic mor-
phological change. Error bars report one unit
of standard error of the mean.
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Fig. 4. How morphological change affects
the robustness of the discovered behaviors.
Bars report results from the same set of trials
described in Fig. 3. The final robot capable of
phototaxis from each independent experi-
ment was reevaluated 100 times in the same
simulated environment in which it evolved,
but now exposed to small random external
perturbations. The reduction in its ability to
reach the light source was computed as
the percent difference between the original
distance it traveled and its new distance tra-
veled during the perturbation.



this paper is great because it:

provides an (optimization) efficiency rationale
for a constraint problem in biology

uses a simple toy robotic model to zoom in on one
specific aspect of a very complex biological phenomenon

uses an established theory from psychology (shaping)
to explain the results from this toy model

uses repeated controlled experiments to show the conditions
when this phenomenon does and doesn't hold true



Towards a theoretical foundation for morphological computation
with compliant bodies

Helmut Hauser - Auke J. Ijspeert -
Rudolf M. Fiichslin - Rolf Pfeifer - Wolfgang Maass
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Fig. 1 From abstract theoretical models for morphological computa-
tion to real physical bodies (consisting of mass-spring systems). a The
morphology (represented here by an array of randomly chosen, time-
invariant, fading memory filters By, ..., By) contributes all temporal
integration that is required to approximate a given filter . The read-
out f is here some memoryless, continuous function and provides the
necessary nonlinear combination. Our theory provides evidence for a
surprisingly large computational power of this simple architecture. b A
possible implementation of (a) with a physical body. The filter array is
built of an array of linear mass-spring systems and the readout is imple-
mented by a feedforward artificial neural network (ANN). ¢ In this
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architecture, the morphology contributes, in addition to the temporal
integration via fading memory filters, generic nonlinear preprocessing
in the form of some arbitrary kernel (i.e., nonlinear projection of x(r)
into a higher dimensional space). In this case, only a linear readout
(instead of e.g., an feedforward ANN) has to be added externally. d A
possible physical realization of (¢). The array of filters and the kernel
are both implemented by a randomly connected network of nonlinear
springs and masses. In the resulting computational device, the output
welghts [woue, 1, . . ., Wout,1] are the only parameters, which are adapted
in order to approximate a given complex filter F
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Theorem Any time-invariant filter F with fading memory
that maps some n-dimensional input stream u € U onto an
output stream y can be approximated with any desired degree

of precision by the simple computational model shown in
Fig. 1a,

1. if there is a rich enough pool B of basis filters (time-
invariant, with fading memory), from which the basis fil-
ters By, ..., By in the filter bank can be chosen (B needs
to have the pointwise separation property) and

2. if there is a rich enough pool R from which the readout
functions f can be chosen (R needs to have the universal
approximation property, i.e., any continuous function on a
compact domain can be uniformly approximated by func-
tions from R).



Morphological computation with feedforward

mass-spring systems 4. | mput

Fig. 3 Applying a feedforward morphological computation device to
approximate the Volterra series operator V (defined by Eq.2) and the
pendulum (Eq. 3) simultaneously with one morphological structure (i.e.,
multitasking). a The used input signal u(¢), which consisted of a prod-
uct of three different sinusoidal functions ( f; = 2.11, f» = 3.73, and
f5 = 4.33 Hz). b The responses of all ten mass-spring systems to this
input (for a better readability the outputs were normalized to zero mean
and a standard deviation of one). ¢ The performance of the proposed
morphological computation device for the Volterra task. The red line is
the target (applying the Volterra series operator to the input, 1.e., Vu(t))
and the blue line shows the output of the morphological computation
device. The green line shows the performance of the device, when no
morphological structure was available, i.e., only the nonlinear readout
of the ANN was applied to the raw input data. Clearly this approach
fails, since the ANN is only a static readout and is not able to represent
the necessary temporal integration, which was contributed in the previ-
ous case by the morphological structure. d The pendulum task: the red
line is the target, the blue line the output of the morphological compu-
tation device and the green line, when no morphological structure was
available
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O internal node
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Fig. 4 Schematic example of a generic mass-spring network. The
nodes (masses) are connected by nonlinear springs. The red nodes are
fixed in order to hold the network in place. The green nodes are ran-
domly chosen inputs nodes, which receive the input in form of horizontal
forces scaled by randomly initiated weights

L ‘ L. L.
Fig. 5 Implementation of input, linear readout, and simulation of
forces of the mass-spring networks. a The input is applied to an input
node as a horizontal force F, proportional to the input signal u (scaled
by a randomly initialized weight wy;,, for this input node). b The read-
out from the network is the weighted sum of all L spring lengths
y(t) = Z;":l woutili (1). In general, the input as well as the output
can be multidimensional. ¢ All the spring forces act along their spring

axis. The resulting force F,, is the sum of all forces acting on the node
and is found by the summation of the force vectors
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Fig. 4 Schematic example of a generic mass-spring network. The
nodes (masses) are connected by nonlinear springs. The red nodes are
fixed in order to hold the network in place. The green nodes are ran-
domly chosen inputs nodes, which receive the input in form of horizontal
forces scaled by randomly initiated weights
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Fig. 6 Setup for the robot arm task. The blue line is the desired trajec-
tory for the end-effector

L ‘ L. L.
Fig. 5 Implementation of input, linear readout, and simulation of
forces of the mass-spring networks. a The input is applied to an input
node as a horizontal force F, proportional to the input signal u (scaled
by a randomly initialized weight wy;,, for this input node). b The read-
out from the network is the weighted sum of all L spring lengths
y(t) = Z;‘L:l wout,ili (). In general, the input as well as the output
can be multidimensional. ¢ All the spring forces act along their spring

axis. The resulting force F,, is the sum of all forces acting on the node
and is found by the summation of the force vectors
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Fig. 7 Generic mass-spring network used for the robot arm task and
subsequently for the multitasking task in Sect.4.3. The red nodes are
globally fixed and the green nodes are the randomly chosen input nodes.
The network consisted of 30 masses and 78 nonlinear springs



Fig. 8 Representation of the inverse dynamics of a robot arm with
the help of morphological computation. a The desired end-effector tra-
jectory split up in its two Cartesian coordinates x and vy (i.e., inputs).
b Ten typical responses (out of all 78) of the mass-spring network to this
input. For a better readability, each signal was normalized to zero mean
and a standard deviation of one. ¢ The performance of the morpholog-
ical computation device. The red lines are the target torque trajectories
and the blue lines are the outputs of the computational device. d The
performance when no morphological structure was available, i.e., only
a LR on the actual values of the inputs remained. This approach failed
to represent the dynamic and nonlinear mapping. e, f Based on the
same construction parameters, we randomly generated 400 networks
and sorted them by their mean squared error (mse) over its two out-
puts. The table shows the performances of the best, the worst, and the
median network. The best network was used for the plot of (¢). The
performances of the worst (black dotted line) and the median network
(green) are presented in (f)
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Another interesting aspect of the approach is that real
physical bodies provide the necessary nonlinearities and the
temporal integration for free. The physical structure simple
reacts on its inputs. Actually, it is not even necessary to have
real physical interpretations of all the available internal sig-
nals in order to exploit them for morphological computa-
tion. Furthermore, the bodies of real biological systems are
not simply computational devices, but they fulfill real func-
tions. For example, they provide animals (and robots) with
the capability to locomote and to interact with their environ-
ments. Therefore, a next step will be to apply the proposed
theory to morphological structures of real robots. This would
also involve the step to move from our presented abstract net-
works, which were be chosen to demonstrate the applicability
of our presented theory, to more realistic simulations includ-
ing the simulation of the interaction between a robot and
its environment. In this context, one would have to investi-
gated the impact of real-world conditions on the performance
of the proposed setups. For example, typical cases for such
real-word conditions are the partial loss of the state of the
morphology and/or noisy readouts.
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