PIEREY

Modern Robotics: Evolutionary Robotics
COSC 4560 / COSC 5560

Professor Cheney
2/12/18

No class on Feb 26 or March 30

Evolving Virtual Creatures

Karl Sims

Thinking Machines Corporation

Evolved Virtual Creatures

Karl Sims

Control system Physical simulation

Effectors

S 3D World
ensors

Figure 2: The cycle of effects between brain, body and world.

Genotype: directed graph. Phenotype: hierarchy of 3D parts.

Figure 1: Designed examples of genotype graphs and correspond-
ing creature morphologies.

(O ==

Figure 6a: The phenotype morphology generated from
the evolved genotype shown in figure 5.

Sensors Neurons Effectors

P1

_ co S - |
PO \: s+7 s |
"]
Qo
_ co \ o * o |

\md
st §+7 t

Figure 5: Example evolved nested graph genotype. The PO ; _
outer graph in bold describes a creature’s morphology. The =
inner graph describes its neural circuitry. CO, PO, P1, and
QO are contact and photosensors, E0 and El are effector Q0
outputs, and those labeled “*" and “s+7?" are neural nodes
that perform product and sum-threshold functions.

3

Figure 6b: The phenotype “brain” generated from the
evolved genotype shown in figure 5. The effector outputs
of this control system cause the morphology above to roll
forward in mmbling motions.

Figure 4a: The phenotype morphology generated from the
evolved genotype shown in figure 3.

—

Figure 4b: The phenotype “brain” generated from the evolved
genotype shown in figure 3. The effector outputs of this control
system cause paddling motions in the four flippers of the mor-

phology above.

Figure 3: Example evolved nested graph genotype. The outer
graph in bold describes a creature’s morphology. The inner graph
describes its neural circuitry. JO and J1 are joint angle sensors, and
EO0 and E1 are effector outputs. The dashed node contains central-
ized neurons that are not associated with any part.

Sensors

Neurons

BT
Lo Saw
oo

:

.lﬁfz Wav
-10s

5l

-038

e, 1P

s Wav

-
ﬂ-v—._,_
=
-]

- Lo
-7 INEm

i

<059

abs

SEEREE 3

Effectors

1 || 11
— = — o]

||
— i
— =

‘\-..‘_‘_“_

K |
BECEES VIl 11}
039

abs ‘|
o >
058
—
]

Mating Directed Graphs

a. Crossovers: b. Grafting:

z'—-ﬁ"

x parent 1 parent 2
parent 2 (}(EE)()(){) *

@ ;
child 662%&) child Bb

Figure 5: Two methods for mating directed graphs.

6.3 Parallel Implementation

This genetic algorithm has been implemented to run in parallel on
a Connection Machine® CM-5 in a master/slave message passing
model. A single processing node performs the genetic algorithm. It
farms out genotypes to the other nodes to be fitness tested, and
gathers back the fitness values after they have been determined.
The fitness tests each include a dynamics simulation and although
most can execute in nearly real-time, they are still the dominant
computational requirement of the system. Performing a fitness test
per processor is a simple but effective way to parallelize this
genetic algorithm, and the overall performance scales quite lin-
early with the number of processors, as long as the population size
is somewhat larger than the number of processors.

Each fitness test takes a different amount of time to compute
depending on the complexity of the creature and how it attempts to
move. To prevent idle processors from just waiting for others to
finish, new generations are started before the fitness tests have
been completed for all individuals. Those slower simulations are
simply skipped during that reproductive cycle, so all processors
remain active. With this approach, an evolution with population
size 300, run for 100 generations, might take around three hours to
complete on a 32 processor CM-5.

Figure 6: Creatures evolved for swimming. Figure 8: Creatures evolved for jumping.

Figure 9: Following behavior. For each creature, four separate tri-
als are shown from the same starting point toward different light
source goal locations.

Evolving 3D Morphology and Behavior by Competition

Karl Sims

Thinking Machines Corporation

»

N\
\
N
\

creature #1
starting zone

Figure 1: The arena.

cube

4

/
/7
/7

/7 creature #2
/ starting zone

| E—

ground plane

The Contest

The creatures’ final distances to the cube are used to cal-
culate their fitness scores. The shortest distance from any
point on the surface of a creatures’s parts to the center of the
cube is used as its distance value. A creature gets a higher
score by being closer to the cube, but also gets a higher score
when its opponent is further away. This encourages creatures
to reach the cube, but also gives points for keeping the oppo-
nent away from it. If dy and d, are the final shortest distances

of each creature to the cube, then the fitnesses for each crea-
ture, f; and f5, are given by:

d,—d
. 27 %
fi = 1.0+
l 1 td;
d,—d
_ 1~ %2
f o= 1'0+d1+d2

This formulation puts all fitness values in the limited range
of 0.0 to 2.0. If the two distances are equal the contestants
receive tie scores of 1.0 each, and in all cases the scores will
average 1.0.

Approximating Competitive Environments

a. All vs. all,
within species.

b. Random,

within species.

¢. Tournament, e. Allvs. all,
within species. between species.
d. Allvs. best, f. Random,
within species. between species.

Figure 2: Different pair-wise competition patterns for one
and two species. The gray areas represent species of inter-
breeding individuals, and lines indicate competitions per-
formed between individuals.

g. All vs. best,
between species.

2.0

fitness

1.0

a. 00

2.0

fitness

1.0

b. oo

Figure 8: Relative fitness between two co-evolving and
competing species, from four independent simulations.

1 | 1]

25 50 75 100
generations

1 | 1 |

25 50 75 100
generations

2.0

fitness

C. 0.0

2.0

fitness

1.0

d. oo

I N A A N Y 1]

25 30 75 100
generations

1 | 1 |

25 50 75 100

generations

Figure 9: Evolved competing creatures.

¢ ENAR—TO

Artificial Evolution for Computer Graphics

Karl Sims

Thinking Machines Corporation

Selection of
Phenotype.

Genotype

Genotype

Figure 1: Phenotype selection, genotype reproduction.

Elc. for
each new

- .
.;n..&..wh ﬁ-uﬁT I

1
- }
q

: Mating plant structures.

]

w
=
oo
)

Evolving Images

The second example of artificial evolution involves the generation of textures by mutating symbolic expressions. Equations that calculate a color
for each pixel coordinate (x,y) are evolved using a function set containing some standard common lisp functions [26], vector transformations,
procedural noise generators, and image processing operations:

+, -, *, /, mod, round, min, max, abs, expt, log, and,

or, xor, sin, cos, atan, if, dissolve, hsv-to-rgb, vector,
transform-vector, bw-noise, color-noise, warped-bw-noise,
warped-color-noise, blur, band-pass, grad-mag, grad-dir,
bump, 1ifs, warped-ifs, warp-abs, warp-rel, warp-by-grad.

Figure 4: Simple expression examples.

(reading left to right, top to bottom)

a. X

b. ¥

c. (abs X)

d. (mod X (abs Y))

e. (and X Y)

f. (bw-noise .2 2)

g. (color-noise .1 2)

h. (grad-direction (bw-noise .15 2) .0 .0)
i. (warped-color-noise (* X .2) Y .1 2)

Figure 5: Parent with 19 random mutations.

Images are
generated
procedurally by
symbolic Lisp
€Xpressions:

Phenotype:
(Image)

Genotype:
(Lisp code)

Color <= F(x,y)

(round (log (+ y (color-grad (round (+ (abs (round (log

(+ y (color-grad (round (+ y (log (invert y) 15.5)) x) 3.1
1.86 #(0.95 0.7 0.59) 1.35)) 0.19) x)) (log (invert y) 15.5))
x) 3.1 1.9 #(0.95 0.7 0.35) 1.35)) 0.19) x)

Computer reproduces
Lisp expressions with
random mutations:

(mod X (expt (abs y) .46))

—» (mod x ((abs y) .46))

(mod x (expt (abs y) .46) T

(mod x (expt (abs y)

User selects the more aesthetically
interesting images for survival:

"Interactive Evolution"

(sin (+ (- (grad-direction (blur (if (hsv-to-rgb (warped-
color-noise #(0.57 0.73 0.92) (/ 1.85 (warped-color-
noise x y 0.02 3.08)) 0.11 2.4)) #(0.54 0.73 0.59) #(1.06
0.82 0.06)) 3.1) 1.46 5.9) (hsv-to-rgb (warped-color-
noise y (/ 4.5 (warped-color-noise yv (/ x y) 2.4 2.4))

0.02 2.4))) x))

(cos (round (atan (log (invert y) (+ (bump (+ (round x y) y) #(0.46 0.82 0.65) 0.02
#(0.1 0.06 0.1) #(0.99 0.06 0.41) 1.47 8.7 3.7) (color-grad (round (+ y y) (log (invert x)
(+ (invert y) (round (+ y x) (bump (warped-ifs (round y y) y 0.08 0.06 7.4 1.65 6.1 0.54 3.1 0.26
0.7315.85.78.90.49 7.2 15.6 0.98) #(0.46 0.82 0.65) 0.02 #(0.1 0.06 0.1)
#(0.99 0.06 0.41) 0.83 8.7 2.6))))) 3.1 6.8 #(0.95 0.7 0.59) 0.57))) #(0.17 0.08 0.75) 0.37)
(vector y 0.09 (cos (round y y)))))

How do we rank the “prettiness” of art?

muua.mnwﬁlllﬂﬂ

(4
Ny

wave(noise(chroma_scale(cinverse(xy - [-3.564, 4.51,1])
- cinverse(xy + [-3,564, 4.51,1]), 0.465)
+27.36,2.7,1,8,2,0), [2.02,2,1.98],0, 1, 0)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

