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Minimally Cognitive Systems



We said last class that adaptive behavior
is built around sensory-motor actions

Just how simple of a sensory motor system do we
need to get interesting “cognitive” behavior?

Is it simple enough that we can still understand
and interpret the underlying brain/behavior??
(like we did for the Braitenberg vehicles)



T

\;I .. Everything should be made as simple
' as possible, but not simpler.

Albert Einstein






What is the simplest setup
(e.g. task/environment/agent)
to evolve a cognitive agent?
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FIGURE 6.1 An agent and its environment as coupled dynamical systems. The agent in turn
is composed of coupled nervous system and body dynamical systems.
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FIGURE 6.3 The walking scenario. (A) The body model. (B) Leg detail. Each leg possesses a
binary foot effector (FT) and an antagonistic pair of effectors for swinging the leg: backward swing
(BS) and forward swing (FS). In some experiments, an angle sensor (AS) was also utilized.



FIGURE 6.2 The chemotaxis scenario. The agent has a bilateral pairs of chemosensors (black
disks) and motors (black rectangles). Its task is to navigate to the chemical source whose intensity
falls off as the inverse square of distance.
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CTRNN

Continuous Time
Recurrent Neural Network



Continuous Time Neural Networks
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Figure 1. Schematic drawings of (A) local representation model and (B) multiple timescale model. (A) Curves colored red, blue, and
green represent sensori-motor sequences corresponding to motor primitives. Output of the system consists of behavior sequences made up of
combinations of these primitives. In the local representation model, functional hierarchy is realized through the use of explicit hierarchical structure,
with local modules representing motor primitives in the lower level, and a higher module representing the order of motor primitives switched via
additional mechanisms such as gate-selection. (B) In the multiple timescale model, primitives are represented by fast context units whose activity
changes quickly, whereas sequences of primitives are represented by slow context units whose activity changes slowly.

doi:10.1371/journal.pcbi.1000220.g001



Perceiving Affordances
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Figure 1: Experimental setup for the passability experiments.
The agent moves horizontally while a wall with an adjustable
aperture falls from above. The rays of the agent’s proximity
sensors are shown in gray.



A real-valued genetic algorithm (Mitchell, 1996) was used
to evolve CTRNN parameters. A population of individuals
was maintained, with each individual encoded as a length M
vector of real numbers. Initially, a random population of
vectors was generated by initializing each component of
every individual to random values uniformly distributed over
the range *1 (they could move outside this range during
evolution). Individuals were selected for reproduction using
a linear rank-based method. A specified elitist fraction of
top individuals in the old population were simply copied to
the new one. The remaining children were generated by ei-
ther mutation or crossover with an adjustable crossover
probability. A selected parent was mutated by adding to it a
random displacement vector whose direction was uniformly
distributed on the M-dimensional hypersphere and whose
magnitude was a Gaussian random variable with 0 mean and
variance o-. The expression derived in the Appendix was
used as a guideline for setting the mutation variance. A neu-
ron’s time constant, bias, gain and input weights were
treated as a module during crossover.



Square agents of size 20 had 7 proximity sensors of
maximum length 160 uniformly distributed over a visual
angle of m/4 (Figure 1). Their horizontal velocity was pro-
portional to the sum of opposing forces produced by a
bilateral pair of effectors (with a constant of proportionality
of 8). Walls consisting of two squares of width 20 separated
by an aperture whose width was in the range [16,24] dropped
from above with a vertical velocity of 4 and a horizontal
offset of £50 relative to the agent.

The circuit architecture was bilaterally symmetric, with 7
sensory neurons projecting to 6 fully interconnected in-
terneurons that in turn projected to two motor neurons
controlling horizontal motion (for a total of 71 parameters).
Populations of 100 individuals were evolved for 2000 gen-
erations with a mutation variance o of 0.3, a crossover
probability of 0.5 and an elitist fraction of 5%.



The performance measure to be maximized was:

NumTrials

Z p; / NumTrials
i=1

2|d| if agent collides with wall

where p; = {100 otherwise

for an opening too narrow for the agent to pass through and

_ max(O, 80 — 4‘dl.|) if agent collides with wall
pf - .
100 otherwise

for an aperture wide enough for the agent to pass through,
and d, is the final horizontal separation between the center of
the agent and the center of the aperture at the end of the i
trial. This fitness measure assigns near-zero fitness to incor-
rect actions and linearly penalizes near-misses.
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Figure 2: Categorization of apertures into passable and im-
passable by the best passability agent. The final horizontal
separation between the agent and the center of the aperture
(mean * s.d., N = 101 ftrials) is plotted against the aperture width
relative to the agent’s size.
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Figure 4: Behavior of the best passability agent. The wall’s
horizontal and vertical position over time relative to the agent
is plotted for an aperture 1 unit smaller than the agent (left) and
| unit larger than the agent (right). Trials begin at top and time
increases from top to bottom.



Self/NonSelf Discrimination

Figure 35: Experimental setup for self/nonself discrimination
experiments. The agent is stationary, but can swing an arm
with an opaque hand along an arc while objects fall from above.



The performance measure to be maximized was:

NumTrials

Z P / NumTrials

i=1
6))

T
max(z ,

where p,=1- ”
T

and 0, is the angular error at the end of the i trial.
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Figure 6: Mean catching accuracy of the best self/nonself
discrimination agent. The final angular position of the hand is
plotted against the final angular position of the object (mean *
s.d., N = 150 trials). Note that the average behavior closely
approximates the ideal (dashed gray line).



Figure 7: Arm angle trajectories over time of the best
self/nonself discrimination agent catching objects at the mid-
line from initial hand positions at either the left or right edge of
the visual field. The trajectories are shaded according to the ini-
tial angular position of the object as indicated at the top of the
plot.



Short-Term Memory
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Figure 8: Experimental setup for short-term memory experi-
ments. The agent can move horizontally while objects fall

either vertically or diagonally from above. The rays are dashed
because, as soon as the agent begins to move, it goes blind.
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The performance measure to be maximized was:

N
(]

NumTrials

200 - de| NumTrials

i=1

where d. is the final horizontal separation between the center
of the agent and the center of the object at the end of the /™
trial.
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Figure 9: Accuracy of the best short-term memory agent for
vertically falling objects. The final horizontal position of the
agent is plotted against the final horizontal position of the
object. Note that the average performance closely approximates
the ideal (dashed gray line) except at the midline and periphery.
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Figure 10: Behavior of the best short-term memory agent for
vertically falling objects. Trajectories of motion relative to the
agent of objects falling vertically from several different initial
horizontal offsets are shown. Gray trajectories are those for
which the agent’s strategy begins to break down.
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Figure 12: Behavior of the best short-term memory agent for
diagonally falling objects. (Left) Trajectories of motion relative
to the agent of objects falling diagonally with a horizontal ve-
locity of 0.5 from several different initial horizontal positions
are shown. (Right) Trajectories of motion relative to the agent
of objects falling diagonally from the midline with several dif-
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ferent horizontal velocities are shown.




Selective Attention
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Figure 13: Experimental setup for selective attention ex-
periments. The agent can move horizontally while 2 objects fall
from above. As described in the text, the initial positions and
velocities of the two objects are constrained so that the agent
has a reasonable chance of catching both.




The performance measure to be maximized was:

NumTrials

200 - Z p; /NumTrials
=1

where p; =|d; ;| + |d;,| and d;, and d,, are the final horizontal
separations between the center of the agent and the center of
the first and second objects on the i* trial.
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Figure 14: Behavior of the best selective attention agent.
Example motion plots are shown for different combinations of
passing objects (PO) and object permanence (OP). In addition,
an especially difficult PO&OP case, in which one object disap-
pears from view before the more distant but faster falling object
passes it, is shown at bottom. Each plot shows the horizontal
positions of the two objects (straight black lines) and the agent
(gray line) over time. The shaded regions correspond to posi-
tions and times in which the faster-falling circle (light gray) and
the slower-falling circle (darker gray) can be seen by the agent.
The dashed lines indicate the time at which the first object over-
takes the second in passing objects cases.
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