

Modern Robotics: Evolutionary Robotics
COSC 4560 / COSC 5560

Professor Cheney
2/2/18

Mutation Rates

Another related parameter to the
exploration-exploitation trade-off

is the mutation rate

Evolutionary Programming

Typically we want to be taking small steps
in the search space

With occasional large exploratory steps

And we are dealing with a vector
of real valued parameters

Let's use a Gaussian mutation rate!

We will use a zero-mean as to not bias mutation

But what should the standard deviation
of our Gaussian be?

Typically we'll just choose a small
deviation, such that about one entry

is changed on average...

But we could optimize that
parameter too!

Evolutionary Strategies

We could evolve a single mutation
rate meta-parameter that is mutated
and selected for just like every other

allele in the genome

Now the genome is N+1 entries long
(for N evolved features/traits)

Or we could evolve a separate
mutation rate for every parameter

Now the genome is 2N entries long
(for N evolved features/traits)

More flexibility/optimization efficiency
at the cost of a larger genome

This is very effective in practice

The most popular version is CMA-ES
Covariance Matrix Adaptation -

Evolutionary Strategies

This not only evolves independent
mutation rates, but also accounts for

co-variance between alleles (epigenetics!)

If we have time later in the semester,
we can explore CMA-ES, and many other

advanced types of evolutionary
algorithms in greater detail

But for now let's skip over them so that
we can talk about all the basic tools
necessary to start evolving robots!

Neural Networks

artificial neuron

artificial neuron

if “activation
function” f(x) is:

called a
“perceptron”

this basic framework is not new…

first artificial neuron:
McCulloch & Pitts (1943)

perceptron:
Rosenblatt (1958)

B

perceptron as logical opperator

B

0.5

0.5

0.5

0.5

-0.9 -0.4

perceptron as logical opperator

activation functions

Perceptrons use the “step function”

But any non-linear function will work

activation functions

input domain:
[-∞, ∞]

output range:
[0, 1]

input domain:
[-∞, ∞]

output range:
[0, ∞]

input domain:
[-∞, ∞]

output range:
[-1, 1]

Effect of changing
the weight w

1

(if bias=0)

Effect of changing
the bias weight

(if w
1
=5)

multi-layer networks

multi-layer networks

All we need to optimize is a weight array for each layer:

w
41

w
41

w
41

x
4

if x
4
= 1

What about the bias weights?

(p.s. don't forget about the non-linearity)

without the non-linearity...

W(1+2) =

multi-layer networks

All we need to optimize is a weight array for each layer:

And we already know how to optimize vectors
using evolutionary computation (e.g. hillclimbers)!

This will be the basis of your homeworks
for the next couple of weeks

(neural networks are just function approximates)

There are also other methods to optimize neural networks,
we'll come back to them over the course of the semester

But this is the simplest and most versatile
(if maybe not the most efficient?)

For the next couple months we'll focus on understanding
what we can use this simple optimization method for

And try just understand just how it works as well as it does
(???)

“feedforward” artificial neural network

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

