

Modern Robotics: Evolutionary Robotics
COSC 4560 / COSC 5560

Professor Cheney
1/29/18

Variations of Evolutionary Algorithms

Fitness/Search Landscapes

guaranteed
to find
optimaa local

but wouldn't we rather have a global optima?

to do so, we'd have to accept (many)
negative mutations to get to the better

“fitness peak”

what if just sometimes,
we accepted negative mutations?

stochastic hillclimbing

accept with probability p<0

what if instead we used
random initialization?

random-restart hillclimbing

random-restart hillclimbing

random-restart hillclimbing

random-restart hillclimbing

“basin of attraction”

how do you decide the probability of
(when to) accept a negative mutation or not?

(i.e. when should you explore
and when should you exploit?)

explore (take risky moves) early in search
so that you have more time to
catch up (and exploit) later on

simulated annealing

the probability of accepting a new negative
mutation decreases over optimization time

at first the point (current state) is randomly
moving around all over the place (state space)

but as the system “temperature cools” over time,
it settles down, and resists change

and will only accept a new position if it's an
improvement over the current one

genetic algorithms

population based methods

accept best k out of n
individuals in a population

then mutate them to
generate individuals to fill

back out the population

Selection Pressure

How much “pressure” is there on a solution
to make an uphill move (“exploitation”)

vs. a downhill move (“exploration”)?

As we saw from random-restart
hillclimbing and simulated annealing,

we want to explore earlier in optimization
(to find the basin of our global optima),

and exploit later in optimization
(to climb to the optima of that basin)

Easier said than done…

Truncation Selection

Fit([1 0 1 0 1 1 1 0 1 1]) = 7
Fit([1 1 1 0 1 0 0 1 0 1]) = 6
Fit([0 1 1 0 1 1 0 0 1 0]) = 5
Fit([0 0 1 1 0 1 0 1 0 0]) = 4
Fit([0 0 0 0 1 0 1 1 1 0]) = 4
Fit([1 1 1 0 0 1 0 1 1 0]) = 4

Select the top-N individuals

Maximum selection pressure (always moving uphill!)

Fitness-Proportional Selection

Fit([1 0 1 0 1 1 1 0 1 1]) = 7
Fit([1 1 1 0 1 0 0 1 0 1]) = 6
Fit([0 1 1 0 1 1 0 0 1 0]) = 5
Fit([0 0 1 1 0 1 0 1 0 0]) = 4
Fit([0 0 0 0 1 0 1 1 1 0]) = 4
Fit([1 1 1 0 0 1 0 1 1 0]) = 4

30

Select N individuals, with an individual being
selected at each draw by the proportion of fitness

it represents (often without replacement)

7/30 = 23%
6/30 = 20%
5/30 = 17%
4/30 = 13%
4/30 = 13%
4/30 = 13%

Fit([1 0 1 0 1 1 1 0 1 1]) = 7
Fit([1 1 1 0 1 0 0 1 0 1]) = 6
Fit([0 1 1 0 1 1 0 0 1 0]) = 5
Fit([0 0 1 1 0 1 0 1 0 0]) = 4
Fit([0 0 0 0 1 0 1 1 1 0]) = 4
Fit([1 1 1 0 0 1 0 1 1 0]) = 4

30

Select N individuals, with an individual being
selected at each draw by the proportion of fitness

it represents (often without replacement)

7/30 = 23%
6/30 = 20%
5/30 = 17%
4/30 = 13%
4/30 = 13%
4/30 = 13%

This is great for stochastically favoring better
individuals more the higher their fitness is

But it comes with one major flaw too…

Fit([1 0 1 0 1 1 1 0 1 1]) = 107
Fit([1 1 1 0 1 0 0 1 0 1]) = 106
Fit([0 1 1 0 1 1 0 0 1 0]) = 105
Fit([0 0 1 1 0 1 0 1 0 0]) = 104
Fit([0 0 0 0 1 0 1 1 1 0]) = 104
Fit([1 1 1 0 0 1 0 1 1 0]) = 104

630

Suppose that later in optimization,
fitness values have gone up dramatically

Fit([1 0 1 0 1 1 1 0 1 1]) = 107
Fit([1 1 1 0 1 0 0 1 0 1]) = 106
Fit([0 1 1 0 1 1 0 0 1 0]) = 105
Fit([0 0 1 1 0 1 0 1 0 0]) = 104
Fit([0 0 0 0 1 0 1 1 1 0]) = 104
Fit([1 1 1 0 0 1 0 1 1 0]) = 104

630

107/630=17.0%
106/630=16.8%
105/630=16.7%
104/630=16.5%
104/630=16.5%
104/630=16.5%

Selection pressures is now much lower
(i.e. smaller chance of taking an uphill step) than

early on when average fitness values were smaller
(this is the opposite of what we want!)

Fit([1 0 1 0 1 1 1 0 1 1]) = 107
Fit([1 1 1 0 1 0 0 1 0 1]) = 106
Fit([0 1 1 0 1 1 0 0 1 0]) = 105
Fit([0 0 1 1 0 1 0 1 0 0]) = 104
Fit([0 0 0 0 1 0 1 1 1 0]) = 104
Fit([1 1 1 0 0 1 0 1 1 0]) = 104

630

107/630=17.0%
106/630=16.8%
105/630=16.7%
104/630=16.5%
104/630=16.5%
104/630=16.5%

Selection pressures is now much lower
(i.e. smaller chance of taking an uphill step) than

early on when average fitness values were smaller
(this is the opposite of what we want!)

Rank-based Selection

Define some selection proportion for
each rank in the population a priori

e.g. exponential fall-off

1) 50%
2) 25%
3) 12.5%
4) 6.25%
5) 3.13%
6) 1.56%

Fit([1 0 1 0 1 1 1 0 1 1]) = 107
Fit([1 1 1 0 1 0 0 1 0 1]) = 106
Fit([0 1 1 0 1 1 0 0 1 0]) = 105
Fit([0 0 1 1 0 1 0 1 0 0]) = 104
Fit([0 0 0 0 1 0 1 1 1 0]) = 104
Fit([1 1 1 0 0 1 0 1 1 0]) = 104

630

We just apply are preset selection probabilities

50%
25%
12.5%
6.25%
3.13%
1.56%

Fit([1 0 1 0 1 1 1 0 1 1]) = 7
Fit([1 1 1 0 1 0 0 1 0 1]) = 6
Fit([0 1 1 0 1 1 0 0 1 0]) = 5
Fit([0 0 1 1 0 1 0 1 0 0]) = 4
Fit([0 0 0 0 1 0 1 1 1 0]) = 4
Fit([1 1 1 0 0 1 0 1 1 0]) = 4

30

And selection pressure is constant
as average fitness changes

50%
25%
12.5%
6.25%
3.13%
1.56%

Fit([1 0 1 0 1 1 1 0 1 1]) = 7
Fit([1 1 1 0 1 0 0 1 0 1]) = 6
Fit([0 1 1 0 1 1 0 0 1 0]) = 5
Fit([0 0 1 1 0 1 0 1 0 0]) = 4
Fit([0 0 0 0 1 0 1 1 1 0]) = 4
Fit([1 1 1 0 0 1 0 1 1 0]) = 4

30

Often we always want to include the most fit
individual in the next population (“elitism”)

100%
25%
12.5%
6.25%
3.13%
1.56%

Tournament Selection

Randomly select a subset (mini-batch) of your
population, perform some other selection method

(most frequently truncation selection)
only on that subset and return the winners

Fit([1 0 1 0 1 1 1 0 1 1]) = 7
Fit([1 1 1 0 1 0 0 1 0 1]) = 6
Fit([0 1 1 0 1 1 0 0 1 0]) = 5
Fit([0 0 1 1 0 1 0 1 0 0]) = 4
Fit([0 0 0 0 1 0 1 1 1 0]) = 4
Fit([1 1 1 0 0 1 0 1 1 0]) = 4

Tournaments can be of any size

e.g. tournament of size 2

Fit([1 0 1 0 1 1 1 0 1 1]) = 7
Fit([1 1 1 0 1 0 0 1 0 1]) = 6
Fit([0 1 1 0 1 1 0 0 1 0]) = 5
Fit([0 0 1 1 0 1 0 1 0 0]) = 4
Fit([0 0 0 0 1 0 1 1 1 0]) = 4
Fit([1 1 1 0 0 1 0 1 1 0]) = 4

Tournaments can be of any size

e.g. tournament of size 2

Fit([1 0 1 0 1 1 1 0 1 1]) = 7
Fit([1 1 1 0 1 0 0 1 0 1]) = 6
Fit([0 1 1 0 1 1 0 0 1 0]) = 5
Fit([0 0 1 1 0 1 0 1 0 0]) = 4
Fit([0 0 0 0 1 0 1 1 1 0]) = 4
Fit([1 1 1 0 0 1 0 1 1 0]) = 4

Usually you continue to select additional tournaments

Fit([1 0 1 0 1 1 1 0 1 1]) = 7
Fit([1 1 1 0 1 0 0 1 0 1]) = 6
Fit([0 1 1 0 1 1 0 0 1 0]) = 5
Fit([0 0 1 1 0 1 0 1 0 0]) = 4
Fit([0 0 0 0 1 0 1 1 1 0]) = 4
Fit([1 1 1 0 0 1 0 1 1 0]) = 4

Usually you continue to select additional tournaments
until all individuals have been evaluated and selected

Fit([1 0 1 0 1 1 1 0 1 1]) = 7
Fit([1 1 1 0 1 0 0 1 0 1]) = 6
Fit([0 1 1 0 1 1 0 0 1 0]) = 5
Fit([0 0 1 1 0 1 0 1 0 0]) = 4
Fit([0 0 0 0 1 0 1 1 1 0]) = 4
Fit([1 1 1 0 0 1 0 1 1 0]) = 4

Small tournaments (e.g. size 2),
have low section pressure since

highly fit individuals can be knocked out

Fit([1 0 1 0 1 1 1 0 1 1]) = 7
Fit([1 1 1 0 1 0 0 1 0 1]) = 6
Fit([0 1 1 0 1 1 0 0 1 0]) = 5
Fit([0 0 1 1 0 1 0 1 0 0]) = 4
Fit([0 0 0 0 1 0 1 1 1 0]) = 4
Fit([1 1 1 0 0 1 0 1 1 0]) = 4

Small tournaments (e.g. size 2),
have low section pressure since
low fit individuals can survive

Fit([1 0 1 0 1 1 1 0 1 1]) = 7
Fit([1 1 1 0 1 0 0 1 0 1]) = 6
Fit([0 1 1 0 1 1 0 0 1 0]) = 5
Fit([0 0 1 1 0 1 0 1 0 0]) = 4
Fit([0 0 0 0 1 0 1 1 1 0]) = 4
Fit([1 1 1 0 0 1 0 1 1 0]) = 4

At the other extreme, a tournament of the full
populations is just regular truncation selection

(and thus has maximum selection pressure)

So tournament size is a great knob to use for
controlling selection pressure

Tournaments are also great in that they can be used
in “steady-state” algorithms, that perform

variation-evaluation-selection loops on small subsets
of the population at a time, instead of “generational”

algorithms that have distinct iterations

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

