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Variations of Evolutionary Algorithms



  

Fitness/Search Landscapes



  



  



  



  



  

guaranteed
to find
optimaa local



  

but wouldn't we rather have a global optima?

to do so, we'd have to accept (many)
negative mutations to get to the better

“fitness peak” 



  



  

what if just sometimes,
we accepted negative mutations?



  

stochastic hillclimbing

accept with probability  p<0



  

what if instead we used
random initialization?



  

random-restart hillclimbing



  

random-restart hillclimbing



  

random-restart hillclimbing



  

random-restart hillclimbing

“basin of attraction”



  

how do you decide the probability of
(when to) accept a negative mutation or not?

(i.e. when should you explore
and when should you exploit?)

explore (take risky moves) early in search
so that you have more time to
catch up (and exploit) later on



  

simulated annealing



  

the probability of accepting a new negative 
mutation decreases over optimization time 

at first the point (current state) is randomly 
moving around all over the place (state space)

but as the system “temperature cools” over time,
it settles down, and resists change

and will only accept a new position if it's an 
improvement over the current one



  



  



  

genetic algorithms



  

population based methods

accept best k out of n 
individuals in a population

then mutate them to 
generate individuals to fill 

back out the population



  



  



  

Selection Pressure



  

How much “pressure” is there on a solution 
to make an uphill move (“exploitation”) 

vs. a downhill move (“exploration”)?



  

As we saw from random-restart 
hillclimbing and simulated annealing,

we want to explore earlier in optimization
(to find the basin of our global optima),

and exploit later in optimization
(to climb to the optima of that basin)

Easier said than done… 



  

Truncation Selection



  

Fit( [ 1  0  1  0  1  1  1  0  1  1 ] ) = 7
Fit( [ 1  1  1  0  1  0  0  1  0  1 ] ) = 6
Fit( [ 0  1  1  0  1  1  0  0  1  0 ] ) = 5
Fit( [ 0  0  1  1  0  1  0  1  0  0 ] ) = 4
Fit( [ 0  0  0  0  1  0  1  1  1  0 ] ) = 4
Fit( [ 1  1  1  0  0  1  0  1  1  0 ] ) = 4

Select the top-N individuals

Maximum selection pressure (always moving uphill!)



  

Fitness-Proportional Selection



  

Fit( [ 1  0  1  0  1  1  1  0  1  1 ] ) = 7 
Fit( [ 1  1  1  0  1  0  0  1  0  1 ] ) = 6
Fit( [ 0  1  1  0  1  1  0  0  1  0 ] ) = 5
Fit( [ 0  0  1  1  0  1  0  1  0  0 ] ) = 4
Fit( [ 0  0  0  0  1  0  1  1  1  0 ] ) = 4
Fit( [ 1  1  1  0  0  1  0  1  1  0 ] ) = 4

30

Select N individuals, with an individual being 
selected at each draw by the proportion of fitness

it represents (often without replacement) 

7/30 = 23%
6/30 = 20%
5/30 = 17%
4/30 = 13%
4/30 = 13%
4/30 = 13%



  

Fit( [ 1  0  1  0  1  1  1  0  1  1 ] ) = 7 
Fit( [ 1  1  1  0  1  0  0  1  0  1 ] ) = 6
Fit( [ 0  1  1  0  1  1  0  0  1  0 ] ) = 5
Fit( [ 0  0  1  1  0  1  0  1  0  0 ] ) = 4
Fit( [ 0  0  0  0  1  0  1  1  1  0 ] ) = 4
Fit( [ 1  1  1  0  0  1  0  1  1  0 ] ) = 4

30

Select N individuals, with an individual being 
selected at each draw by the proportion of fitness

it represents (often without replacement) 

7/30 = 23%
6/30 = 20%
5/30 = 17%
4/30 = 13%
4/30 = 13%
4/30 = 13%



  

This is great for stochastically favoring better 
individuals more the higher their fitness is

But it comes with one major flaw too… 



  

Fit([1  0  1  0  1  1  1  0  1  1]) = 107
Fit([1  1  1  0  1  0  0  1  0  1]) = 106
Fit([0  1  1  0  1  1  0  0  1  0]) = 105
Fit([0  0  1  1  0  1  0  1  0  0]) = 104
Fit([0  0  0  0  1  0  1  1  1  0]) = 104
Fit([1  1  1  0  0  1  0  1  1  0]) = 104

630  

Suppose that later in optimization,
fitness values have gone up dramatically



  

Fit([1  0  1  0  1  1  1  0  1  1]) = 107
Fit([1  1  1  0  1  0  0  1  0  1]) = 106
Fit([0  1  1  0  1  1  0  0  1  0]) = 105
Fit([0  0  1  1  0  1  0  1  0  0]) = 104
Fit([0  0  0  0  1  0  1  1  1  0]) = 104
Fit([1  1  1  0  0  1  0  1  1  0]) = 104

630  

107/630=17.0%
106/630=16.8%
105/630=16.7%
104/630=16.5%
104/630=16.5%
104/630=16.5%

Selection pressures is now much lower
(i.e. smaller chance of taking an uphill step) than 

early on when average fitness values were smaller
(this is the opposite of what we want!)



  

Fit([1  0  1  0  1  1  1  0  1  1]) = 107
Fit([1  1  1  0  1  0  0  1  0  1]) = 106
Fit([0  1  1  0  1  1  0  0  1  0]) = 105
Fit([0  0  1  1  0  1  0  1  0  0]) = 104
Fit([0  0  0  0  1  0  1  1  1  0]) = 104
Fit([1  1  1  0  0  1  0  1  1  0]) = 104

630  

107/630=17.0%
106/630=16.8%
105/630=16.7%
104/630=16.5%
104/630=16.5%
104/630=16.5%

Selection pressures is now much lower
(i.e. smaller chance of taking an uphill step) than 

early on when average fitness values were smaller
(this is the opposite of what we want!)



  

Rank-based Selection



  

Define some selection proportion for
each rank in the population a priori

e.g. exponential fall-off

1) 50%  
2) 25%  
3) 12.5%
4) 6.25%
5) 3.13%
6) 1.56%



  

Fit([1  0  1  0  1  1  1  0  1  1]) = 107
Fit([1  1  1  0  1  0  0  1  0  1]) = 106
Fit([0  1  1  0  1  1  0  0  1  0]) = 105
Fit([0  0  1  1  0  1  0  1  0  0]) = 104
Fit([0  0  0  0  1  0  1  1  1  0]) = 104
Fit([1  1  1  0  0  1  0  1  1  0]) = 104

630  

We just apply are preset selection probabilities

50%  
25%  
12.5%
6.25%
3.13%
1.56%



  

Fit([1  0  1  0  1  1  1  0  1  1]) = 7
Fit([1  1  1  0  1  0  0  1  0  1]) = 6
Fit([0  1  1  0  1  1  0  0  1  0]) = 5
Fit([0  0  1  1  0  1  0  1  0  0]) = 4
Fit([0  0  0  0  1  0  1  1  1  0]) = 4
Fit([1  1  1  0  0  1  0  1  1  0]) = 4

30   

And selection pressure is constant
as average fitness changes

50%  
25%  
12.5%
6.25%
3.13%
1.56%



  

Fit([1  0  1  0  1  1  1  0  1  1]) = 7
Fit([1  1  1  0  1  0  0  1  0  1]) = 6
Fit([0  1  1  0  1  1  0  0  1  0]) = 5
Fit([0  0  1  1  0  1  0  1  0  0]) = 4
Fit([0  0  0  0  1  0  1  1  1  0]) = 4
Fit([1  1  1  0  0  1  0  1  1  0]) = 4

30   

Often we always want to include the most fit 
individual in the next population (“elitism”)

100%  
25%  
12.5%
6.25%
3.13%
1.56%



  

Tournament Selection



  

Randomly select a subset (mini-batch) of your 
population, perform some other selection method

(most frequently truncation selection)
only on that subset and return the winners



  

Fit( [ 1  0  1  0  1  1  1  0  1  1 ] ) = 7 
Fit( [ 1  1  1  0  1  0  0  1  0  1 ] ) = 6
Fit( [ 0  1  1  0  1  1  0  0  1  0 ] ) = 5
Fit( [ 0  0  1  1  0  1  0  1  0  0 ] ) = 4
Fit( [ 0  0  0  0  1  0  1  1  1  0 ] ) = 4
Fit( [ 1  1  1  0  0  1  0  1  1  0 ] ) = 4

Tournaments can be of any size

e.g. tournament of size 2 



  

Fit( [ 1  0  1  0  1  1  1  0  1  1 ] ) = 7 
Fit( [ 1  1  1  0  1  0  0  1  0  1 ] ) = 6
Fit( [ 0  1  1  0  1  1  0  0  1  0 ] ) = 5
Fit( [ 0  0  1  1  0  1  0  1  0  0 ] ) = 4
Fit( [ 0  0  0  0  1  0  1  1  1  0 ] ) = 4
Fit( [ 1  1  1  0  0  1  0  1  1  0 ] ) = 4

Tournaments can be of any size

e.g. tournament of size 2 



  

Fit( [ 1  0  1  0  1  1  1  0  1  1 ] ) = 7 
Fit( [ 1  1  1  0  1  0  0  1  0  1 ] ) = 6
Fit( [ 0  1  1  0  1  1  0  0  1  0 ] ) = 5
Fit( [ 0  0  1  1  0  1  0  1  0  0 ] ) = 4
Fit( [ 0  0  0  0  1  0  1  1  1  0 ] ) = 4
Fit( [ 1  1  1  0  0  1  0  1  1  0 ] ) = 4

Usually you continue to select additional tournaments



  

Fit( [ 1  0  1  0  1  1  1  0  1  1 ] ) = 7 
Fit( [ 1  1  1  0  1  0  0  1  0  1 ] ) = 6
Fit( [ 0  1  1  0  1  1  0  0  1  0 ] ) = 5
Fit( [ 0  0  1  1  0  1  0  1  0  0 ] ) = 4
Fit( [ 0  0  0  0  1  0  1  1  1  0 ] ) = 4
Fit( [ 1  1  1  0  0  1  0  1  1  0 ] ) = 4

Usually you continue to select additional tournaments
until all individuals have been evaluated and selected



  

Fit( [ 1  0  1  0  1  1  1  0  1  1 ] ) = 7 
Fit( [ 1  1  1  0  1  0  0  1  0  1 ] ) = 6
Fit( [ 0  1  1  0  1  1  0  0  1  0 ] ) = 5
Fit( [ 0  0  1  1  0  1  0  1  0  0 ] ) = 4
Fit( [ 0  0  0  0  1  0  1  1  1  0 ] ) = 4
Fit( [ 1  1  1  0  0  1  0  1  1  0 ] ) = 4

Small tournaments (e.g. size 2),
have low section pressure since

highly fit individuals can be knocked out



  

Fit( [ 1  0  1  0  1  1  1  0  1  1 ] ) = 7 
Fit( [ 1  1  1  0  1  0  0  1  0  1 ] ) = 6
Fit( [ 0  1  1  0  1  1  0  0  1  0 ] ) = 5
Fit( [ 0  0  1  1  0  1  0  1  0  0 ] ) = 4
Fit( [ 0  0  0  0  1  0  1  1  1  0 ] ) = 4
Fit( [ 1  1  1  0  0  1  0  1  1  0 ] ) = 4

Small tournaments (e.g. size 2),
have low section pressure since
low fit individuals can survive



  

Fit( [ 1  0  1  0  1  1  1  0  1  1 ] ) = 7 
Fit( [ 1  1  1  0  1  0  0  1  0  1 ] ) = 6
Fit( [ 0  1  1  0  1  1  0  0  1  0 ] ) = 5
Fit( [ 0  0  1  1  0  1  0  1  0  0 ] ) = 4
Fit( [ 0  0  0  0  1  0  1  1  1  0 ] ) = 4
Fit( [ 1  1  1  0  0  1  0  1  1  0 ] ) = 4

At the other extreme, a tournament of the full 
populations is just regular truncation selection

(and thus has maximum selection pressure)



  

So tournament size is a great knob to use for 
controlling selection pressure

Tournaments are also great in that they can be used
in “steady-state” algorithms, that perform 

variation-evaluation-selection loops on small subsets 
of the population at a time, instead of “generational” 

algorithms that have distinct iterations
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