

Modern Robotics: Evolutionary Robotics
COSC 4560 / COSC 5560

Professor Cheney
1/26/18

Intro to Artificial Evolution

Major pieces:

1) Genetic Variation

2) Evaluation

3) Selection

Genetic Variation

Random variations will be used
to propose new designs/solutions

that the algorithm will try out

How will we go about this?

Genetic Encoding

What is the DNA of our designs?
What are the basic building blocks?

What's the best encoding for
artificial evolution?

This is a very hard problem with
lots of active research!

We don't even understand all the
properties of biological DNA!

What's the simplest genetic encoding we could use?

[0 0 1 0 1 1 0 1 1 0]

A vector encoding (e.g. a bit string)?

What could this represent?

Anything…

What could this represent?

Items included in a knapsack problem (binary)

What could this represent?

Visitation order in a traveling salesman problem (int)

What could this represent?

Weights in an artificial neural network (float)

Most problems can be represented
in many different ways...

Integer list of
which items to

bring?

Binary list of
inclusion or not
for each item?

Which is better?

Integer list of
which items to

bring?

Binary list of
inclusion or not
for each item?

Which is better?

2 parameters:
volume of hot water,
volume of cold water

2 parameters:
volume of total water,
temperature of water

Depends on what you want from it!

Better for using a
fixed amount of

hot water

Better for keeping a
constant temperature

But for now (and for you 1st HW assignment),
let's just keep it as an abstract vector

[0 0 1 0 1 1 0 1 1 0]

Genetic Variations

Genetic Mutation:
(transcription error)

Genetic Mutation:

[0 0 1 0 1 1 0 1 1 0]

With some (small) probability,
change each entry

[0 0 1 0 1 0 0 1 1 0]

Genetic Mutation:

[0 0 1 0 1 1 0 1 1 0]

With some (small) probability,
change each entry

[0 0 1 0 1 0 0 1 1 0]

“parent”

“child”

Genetic Crossover:
(homologous recombination)

Genetic Crossover:

[0 0 1 0 1 1 0 1 1 0]
[1 0 1 1 0 1 0 0 0 1]

Pick a crossover point, and exchange genes

[0 0 1 0 1 1 0 0 0 1]
[1 0 1 1 0 1 0 1 1 0]

Genetic Crossover:

[0 0 1 0 1 1 0 1 1 0]
[1 0 1 1 0 1 0 0 0 1]

Pick a crossover point, and exchange genes

[0 0 1 0 1 1 0 0 0 1]
[1 0 1 1 0 1 0 1 1 0]

“parents”

“children”

Genetic Crossover:

[0 0 1 0 1 1 0 1 1 0]
[1 0 1 1 0 1 0 0 0 1]

Two-point crossover exchanges a section of genes

[0 0 1 1 0 1 0 1 1 0]
[1 0 1 0 1 1 0 0 0 1]

Two-point crossover is more biased to modify
genes near the middle of the “genome”

[0 0 1 1 0 1 0 1 1 0]
[1 0 1 0 1 1 0 0 0 1]

While single-point crossover is biased towards
making changes near the edges

[0 0 1 0 1 1 0 0 0 1]
[1 0 1 1 0 1 0 1 1 0]

Both are more likely to change nearby genes
together than those far apart on the genome

Evaluation

Now that we have some potential solutions
(the new children from genetic variations),

let's see how good they are...

For our robotics examples, this will mean building a
physical robot (“phenotype”) that is described by

the blueprints in the DNA (“genotype”)
inside of a physics engine (simulator)

Then asking how well it did at our desired task
(e.g. measuring how far it walked)

But as long as you're able to
rank solutions, it doesn't really matter

how your evaluator does it...

For example, your “fitness” could be proportion of
images correctly classified by a neural network

with the weights described in your genome

For our bit string example (and for your HW),
let's just maximize the sum of the vector

Fitness(x) = Sum(x)

 Fitness([0 0 1 0 1 1 0 1 1 0]) = 5

Selection

Given a “population” of genomes
which ones will go on to be the
parents of the next “generation”?

[1 1 1 0 0 1 0 1 1 0]
[1 0 1 0 1 1 1 0 1 1]
[0 0 0 0 1 0 1 1 1 0]
[0 1 1 0 1 1 0 0 1 0]
[1 1 1 0 1 0 0 1 0 1]
[0 0 1 1 0 1 0 1 0 0]

Population (pre-selection)

Fit([1 1 1 0 0 1 0 1 1 0]) = 4
Fit([1 0 1 0 1 1 1 0 1 1]) = 7
Fit([0 0 0 0 1 0 1 1 1 0]) = 4
Fit([0 1 1 0 1 1 0 0 1 0]) = 5
Fit([1 1 1 0 1 0 0 1 0 1]) = 6
Fit([0 0 1 1 0 1 0 1 0 0]) = 4

Population fitnesses (pre-selection)

Fit([1 0 1 0 1 1 1 0 1 1]) = 7
Fit([1 1 1 0 1 0 0 1 0 1]) = 6
Fit([0 1 1 0 1 1 0 0 1 0]) = 5
Fit([0 0 1 1 0 1 0 1 0 0]) = 4
Fit([0 0 0 0 1 0 1 1 1 0]) = 4
Fit([1 1 1 0 0 1 0 1 1 0]) = 4

Population sorted by fitness (pre-selection)

Fit([1 0 1 0 1 1 1 0 1 1]) = 7
Fit([1 1 1 0 1 0 0 1 0 1]) = 6
Fit([0 1 1 0 1 1 0 0 1 0]) = 5
Fit([0 0 1 1 0 1 0 1 0 0]) = 4
Fit([0 0 0 0 1 0 1 1 1 0]) = 4
Fit([1 1 1 0 0 1 0 1 1 0]) = 4

Population (post “truncation” selection)

Fit([1 0 1 0 1 1 1 0 1 1]) = 7
Fit([1 1 1 0 1 0 0 1 0 1]) = 6
Fit([0 1 1 0 1 1 0 0 1 0]) = 5

Population (post “truncation” selection)

We now have ways to:

1) Grow the population (mutation)

2) Sort the population (evaluation)

3) Shrink the population (selection)

That's enough to build our first
optimization algorithm!

Hillclimber

This is the simplest type of optimization algorithm
(and the one you'll implement in HW 1)

It consists of an initial population of size 1,

We then use mutation to create a child from that
parent (ballooning the population to size 2),

Evaluate both of those individuals using our fitness
function (let's stick with “maximize the sum”)

Then use truncation selection to choose the best
of those two (reducing the population back to 1),

later, rinse, and repeat… until desired outcome

Generation 0:

 [0 0 1 0 1 1 0 1 1 0]

Generation 0:

 [0 0 1 0 1 1 0 1 1 0]
 [1 0 1 0 1 1 0 1 1 0]

Generation 0:

Fitness([0 0 1 0 1 1 0 1 1 0]) = 5
Fitness([1 0 1 0 1 1 0 1 1 0]) = 6

Generation 0:

Fitness([0 0 1 0 1 1 0 1 1 0]) = 5
Fitness([1 0 1 0 1 1 0 1 1 0]) = 6

Generation 1:

Fitness([1 0 1 0 1 1 0 1 1 0]) = 6

Generation 1:

Fitness([1 0 1 0 1 1 0 1 1 0]) = 6
Fitness([1 0 1 0 1 0 0 1 1 0]) = 5

Generation 1:

Fitness([1 0 1 0 1 1 0 1 1 0]) = 6
Fitness([1 0 1 0 1 0 0 1 1 0]) = 5

Generation 2:

Fitness([1 0 1 0 1 1 0 1 1 0]) = 6

Generation 2:

Fitness([1 0 1 0 1 1 0 1 1 0]) = 6
Fitness([1 0 1 0 1 1 0 1 1 1]) = 7

Generation 2:

Fitness([1 0 1 0 1 1 0 1 1 0]) = 6
Fitness([1 0 1 0 1 1 0 1 1 1]) = 7

Generation 3:

Fitness([1 0 1 0 1 1 0 1 1 1]) = 7

Does it seem simple and easy…

That's because it is!

How many generations will this
algorithm take until it converges

to the optimal solution?

(for this problem of maximizing sum
for a binary vector of length 10)

What's the expected number of 1's
in the vector in generation 0?

5/10

How likely is it to change a 0 to a 1 in generation 0?

5/10 = 0.5

What is the expectation for how many generations
this will take to accomplish?

1/0.5 = 2

How many 1's are in the vector now?

6/10

How likely is it to change a 0 to a 1?

4/10 = 0.4

What is the expectation for how many generations
this will take to accomplish?

1/0.4 = 2.5

How many 1's are in the vector now?

7/10

How likely is it to change a 0 to a 1?

3/10 = 0.3

What is the expectation for how many generations
this will take to accomplish?

1/0.3 = 3.33

So how long will it take total?

10/5 + 10/4 + 10/3 + 10/2 + 10/1 = 22.83 generations

Note how the better the fitness of the vector
(the closer it is to being optimal),

the longer it takes to improve!

(i.e. asymptotic optimization curve)

5

10

F
itn

es
s

0 23
Optimization Time

5

10

F
itn

es
s

0 23
Optimization Time

Fitness-over-time curves help us
to visualize how our algorithm

(and the fitness landscape) behave

In your homework this weekend, you'll be asked to
implement exactly this problem at a larger scale,

(look for a similar asymptote and logarithmic curve)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

