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Intro to Artificial Evolution



  

Major pieces:

1) Genetic Variation

2) Evaluation

3) Selection



  

Genetic Variation



  

Random variations will be used 
to propose new designs/solutions 

that the algorithm will try out

How will we go about this?



  

Genetic Encoding



  

What is the DNA of our designs?
What are the basic building blocks?



  

What's the best encoding for 
artificial evolution?

This is a very hard problem with 
lots of active research!

We don't even understand all the 
properties of biological DNA!



  

What's the simplest genetic encoding we could use?

[ 0  0  1  0  1  1  0  1  1  0 ]

A vector encoding (e.g. a bit string)? 



  

What could this represent?

Anything… 



  

What could this represent?

Items included in a knapsack problem (binary)



  

What could this represent?

Visitation order in a traveling salesman problem (int)



  

What could this represent?

Weights in an artificial neural network (float)



  

Most problems can be represented
in many different ways...

Integer list of 
which items to 

bring?

Binary list of 
inclusion or not 
for each item?



  

Which is better?

Integer list of 
which items to 

bring?

Binary list of 
inclusion or not 
for each item?



  

Which is better?

2 parameters:
volume of hot water,
volume of cold water

2 parameters:
volume of total water,
temperature of water



  

Depends on what you want from it!

Better for using a 
fixed amount of

hot water

Better for keeping a 
constant temperature



  

But for now (and for you 1st HW assignment),
let's just keep it as an abstract vector

[ 0  0  1  0  1  1  0  1  1  0 ]



  

Genetic Variations



  

Genetic Mutation:
(transcription error)



  

Genetic Mutation:

[ 0  0  1  0  1  1  0  1  1  0 ]

With some (small) probability,
change each entry

[ 0  0  1  0  1  0  0  1  1  0 ]



  

Genetic Mutation:

[ 0  0  1  0  1  1  0  1  1  0 ]

With some (small) probability,
change each entry

[ 0  0  1  0  1  0  0  1  1  0 ]

“parent”

“child”



  

Genetic Crossover:
(homologous recombination)



  

Genetic Crossover:

[ 0  0  1  0  1  1  0  1  1  0 ]
[ 1  0  1  1  0  1  0  0  0  1 ]

Pick a crossover point, and exchange genes

[ 0  0  1  0  1  1  0  0  0  1 ]
[ 1  0  1  1  0  1  0  1  1  0 ]



  

Genetic Crossover:

[ 0  0  1  0  1  1  0  1  1  0 ]
[ 1  0  1  1  0  1  0  0  0  1 ]

Pick a crossover point, and exchange genes

[ 0  0  1  0  1  1  0  0  0  1 ]
[ 1  0  1  1  0  1  0  1  1  0 ]

“parents”

“children”



  

Genetic Crossover:

[ 0  0  1  0  1  1  0  1  1  0 ]
[ 1  0  1  1  0  1  0  0  0  1 ]

Two-point crossover exchanges a section of genes

[ 0  0  1  1  0  1  0  1  1  0 ]
[ 1  0  1  0  1  1  0  0  0  1 ]



  

Two-point crossover is more biased to modify 
genes near the middle of the “genome”

[ 0  0  1  1  0  1  0  1  1  0 ]
[ 1  0  1  0  1  1  0  0  0  1 ]

While single-point crossover is biased towards 
making changes near the edges

[ 0  0  1  0  1  1  0  0  0  1 ]
[ 1  0  1  1  0  1  0  1  1  0 ]

Both are more likely to change nearby genes 
together than those far apart on the genome



  

Evaluation



  

Now that we have some potential solutions
(the new children from genetic variations),

let's see how good they are...



  

For our robotics examples, this will mean building a 
physical robot (“phenotype”) that is described by 

the blueprints in the DNA (“genotype”)
inside of a physics engine (simulator)



  

Then asking how well it did at our desired task
(e.g. measuring how far it walked)



  

But as long as you're able to
rank solutions, it doesn't really matter

how your evaluator does it...



  

For example, your “fitness” could be proportion of 
images correctly classified by a neural network

with the weights described in your genome 



  

For our bit string example (and for your HW),
let's just maximize the sum of the vector

Fitness( x ) = Sum( x )

 Fitness( [ 0  0  1  0  1  1  0  1  1  0 ] ) = 5



  

Selection



  

Given a “population” of genomes
which ones will go on to be the 
parents of the next “generation”?



  

[ 1  1  1  0  0  1  0  1  1  0 ]
[ 1  0  1  0  1  1  1  0  1  1 ]
[ 0  0  0  0  1  0  1  1  1  0 ]
[ 0  1  1  0  1  1  0  0  1  0 ]
[ 1  1  1  0  1  0  0  1  0  1 ]
[ 0  0  1  1  0  1  0  1  0  0 ]

Population (pre-selection)



  

Fit( [ 1  1  1  0  0  1  0  1  1  0 ] ) = 4
Fit( [ 1  0  1  0  1  1  1  0  1  1 ] ) = 7
Fit( [ 0  0  0  0  1  0  1  1  1  0 ] ) = 4
Fit( [ 0  1  1  0  1  1  0  0  1  0 ] ) = 5
Fit( [ 1  1  1  0  1  0  0  1  0  1 ] ) = 6
Fit( [ 0  0  1  1  0  1  0  1  0  0 ] ) = 4

Population fitnesses (pre-selection)



  

Fit( [ 1  0  1  0  1  1  1  0  1  1 ] ) = 7
Fit( [ 1  1  1  0  1  0  0  1  0  1 ] ) = 6
Fit( [ 0  1  1  0  1  1  0  0  1  0 ] ) = 5
Fit( [ 0  0  1  1  0  1  0  1  0  0 ] ) = 4
Fit( [ 0  0  0  0  1  0  1  1  1  0 ] ) = 4
Fit( [ 1  1  1  0  0  1  0  1  1  0 ] ) = 4

Population sorted by fitness (pre-selection)



  

Fit( [ 1  0  1  0  1  1  1  0  1  1 ] ) = 7
Fit( [ 1  1  1  0  1  0  0  1  0  1 ] ) = 6
Fit( [ 0  1  1  0  1  1  0  0  1  0 ] ) = 5
Fit( [ 0  0  1  1  0  1  0  1  0  0 ] ) = 4
Fit( [ 0  0  0  0  1  0  1  1  1  0 ] ) = 4
Fit( [ 1  1  1  0  0  1  0  1  1  0 ] ) = 4

Population (post “truncation” selection)



  

Fit( [ 1  0  1  0  1  1  1  0  1  1 ] ) = 7
Fit( [ 1  1  1  0  1  0  0  1  0  1 ] ) = 6
Fit( [ 0  1  1  0  1  1  0  0  1  0 ] ) = 5

Population (post “truncation” selection)



  

We now have ways to:

1)  Grow the population (mutation)

2)  Sort the population (evaluation)

3)  Shrink the population (selection)

That's enough to build our first
optimization algorithm!



  

Hillclimber



  

This is the simplest type of optimization algorithm
(and the one you'll implement in HW 1)



  

It consists of an initial population of size 1,

We then use mutation to create a child from that 
parent (ballooning the population to size 2),

Evaluate both of those individuals using our fitness 
function (let's stick with “maximize the sum”)

Then use truncation selection to choose the best
of those two (reducing the population back to 1),

later, rinse, and repeat… until desired outcome



  

Generation 0:

     [ 0  0  1  0  1  1  0  1  1  0 ]
     



  

Generation 0:

     [ 0  0  1  0  1  1  0  1  1  0 ]
     [ 1  0  1  0  1  1  0  1  1  0 ]



  

Generation 0:

Fitness( [ 0  0  1  0  1  1  0  1  1  0 ] ) = 5
Fitness( [ 1  0  1  0  1  1  0  1  1  0 ] ) = 6



  

Generation 0:

Fitness( [ 0  0  1  0  1  1  0  1  1  0 ] ) = 5
Fitness( [ 1  0  1  0  1  1  0  1  1  0 ] ) = 6



  

Generation 1:

Fitness( [ 1  0  1  0  1  1  0  1  1  0 ] ) = 6



  

Generation 1:

Fitness( [ 1  0  1  0  1  1  0  1  1  0 ] ) = 6
Fitness( [ 1  0  1  0  1  0  0  1  1  0 ] ) = 5



  

Generation 1:

Fitness( [ 1  0  1  0  1  1  0  1  1  0 ] ) = 6
Fitness( [ 1  0  1  0  1  0  0  1  1  0 ] ) = 5



  

Generation 2:

Fitness( [ 1  0  1  0  1  1  0  1  1  0 ] ) = 6



  

Generation 2:

Fitness( [ 1  0  1  0  1  1  0  1  1  0 ] ) = 6
Fitness( [ 1  0  1  0  1  1  0  1  1  1 ] ) = 7



  

Generation 2:

Fitness( [ 1  0  1  0  1  1  0  1  1  0 ] ) = 6
Fitness( [ 1  0  1  0  1  1  0  1  1  1 ] ) = 7



  

Generation 3:

Fitness( [ 1  0  1  0  1  1  0  1  1  1 ] ) = 7



  



  

Does it seem simple and easy…

That's because it is!



  

How many generations will this 
algorithm take until it converges

to the optimal solution?

(for this problem of maximizing sum
for a binary vector of length 10)



  

What's the expected number of 1's
in the vector in generation 0?

5/10

How likely is it to change a 0 to a 1 in generation 0?

5/10 = 0.5

What is the expectation for how many generations 
this will take to accomplish?

1/0.5 = 2



  

How many 1's are in the vector now?

6/10

How likely is it to change a 0 to a 1?

4/10 = 0.4

What is the expectation for how many generations 
this will take to accomplish?

1/0.4 = 2.5



  

How many 1's are in the vector now?

7/10

How likely is it to change a 0 to a 1?

3/10 = 0.3

What is the expectation for how many generations 
this will take to accomplish?

1/0.3 = 3.33



  

So how long will it take total?

10/5 + 10/4 + 10/3 + 10/2 + 10/1 = 22.83 generations

Note how the better the fitness of the vector
(the closer it is to being optimal),

the longer it takes to improve!

(i.e. asymptotic optimization curve)
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Fitness-over-time curves help us
to visualize how our algorithm

(and the fitness landscape) behave



  

In your homework this weekend, you'll be asked to 
implement exactly this problem at a larger scale,

(look for a similar asymptote and logarithmic curve)
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