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Announcements



TA Office Hours
(coding and assignment help):

Tuesday/Thursday 2-4pm

HW Assignment 1 posted!



University Calendar Revised:

e Jan. 31 — Last day to add/drop classes
(one week from today!)

e Mar. 21 — Mid-semester grades

e Apr. 13 — Last day to withdraw

* May 11 — Our class' final (10:15-12:15)

* May 17 — Spring 2018 final grades




Meet and Greet



What's your name?
Where are you from?
Why are you here?
(What's your background/major?
What are you hoping to learn?)

One fun fact about yourself



Why Evolutionary Robotics?



Why Robotics?



Robotics Markets Are Growing Even Faster Than Expected

In 2014, BCG projected that the global market for robotics would Original Updated
reach $67 billion by 2025. In 2017 we had to revise our estimates est. +156% est.
sharply upward to $87 billion by 2025—mostly because of soaring 9.0 *23.0 4

consumer demand.
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COMMERCIAL

Industries such as retail, e-commerce, health care, and consumer
products are embracing robots. Robots' greater precision and ability
to work side by side with humans opens up many new applications.

Size of the commercial robotics market, 2000-2025 ($billions)

2014 estimate 22.8
2017 estimate 17.0
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CONSUMER

Falling prices, faster CPUs, and easier programming put robotics
within reach of the consumer market. Self-driving cars and robots
for the home are likely to generate explosive growth,

Size of the consumer robotics market, 2000-2025 ($billions)

2014 estimate 23.0
2017 estimate
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Source: Boston Dynamics Group



TECH « ROBOTICS

The Multi-Billion Dollar Robotics Market Is About
4 toBoom

= FORTUNE

A Fanuc R-2000iC robot spot-welding the body of a truck.

By JONATHAN VANIAN

Here's another sign that the robotics industry is poised to see big gains in the future.

On Wednesday, a report by International Data Corporation said worldwide spending on
robotics and related services will hit $135.4 billion in 2019. The research firm said that
global robotics spending in 2015 was 71 billion, and is set to grow at a compound

annual growth rate of 17%.
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Why Evolutionary Robotics?




Designing robots is hard!



Honda Asimo, 2006
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DARPA Robotics Challenge, 2015




Robots have not historically been designed
for autonomous behavior or use in
dynamic and unstructured environments






But robot controller and body-plans that are
hand-designed by engineers (“top-down”)
can't possibly account for every single instance
and specify the ideal behavior in that scenario

Behaviors in biology are “emergent” (“bottom-up”)
properties that are built by experience and
trial-and-error, rather than specified a priori
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Hand-engineered solution often rely on
complex multi-step computation pipelines
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Biology find much simpler “hacks”

McLeod, P., & Dienes, Z. (1996). Do fielders know where to go to catch the ball or only how to
get there?. Journal of experimental psychology: human perception and performance, 22(3), 531.



Thus, the best approaches are bio-inspired!
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But designing a new robot for each task,
environmental niche, or desired features set
is time consuming and expensive

(and again assumes a task and behavior a priori)



m Boston Dynamics Gets $10 Million from _

DARPA for New Stealthy, Bulletproof LS3

By Evan Ackerman
Posted 23 Sep 2013 | 14:42 GMT

You'd think that Boston Dynamics would be all kinds of busy building (and
supporting) a small army of Atlas robots for the DARPA Robotics Challenge. But, it
looks like they've somehow managed to find the time to continue working on all of
their other systems as well, like BigDog's big brother, LS3. Last week, DARPA
committed to investing an extra $10 million towards a more robust and (eventually)
deployable robot.

DARPA is very specific about what they want to see in the next-gen LS3, namely:



So instead of taking inspiration from
specific biological creatures,

let's take inspiration from biology's higher-level
optimization principles and methodologies

since all biological creatures have these in common,
we only need to do it once!



Prolostomes

Mammals




The algorithms are conceptually simple



Artificial Brains
Neural Networks

Create
Artificial Genome
Digital DNA
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As population-based optimizers,
they don't require closed-form expression
for the cost function for the
behavior/robot being optimized

(nor a supervised example of ideal behavior)
“creative machines”



Softmax Regression

Cost Function

We now describe the cost function that we'll use for softmax regression. In the equation below, 1{]- is the indicator function, so that 1{a true statement} = 1, and 1{a false statement} = 0. For example, 1{2 + 2 = 4} evaluates to 1;
whereas 1{1 + 1 = 5} evaluates to 0. Our cost function will be:
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Motice that this generalizes the logistic regression cost function, which could also have been written:
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The softmax cost function is similar, except that we now sum over the k different possible values of the class label. Note also that in softmax regression, we have that p(y(") — j|3;("); g) — ﬁ
=16

There is no known closed-form way to solve for the minimum of J(8), and thus as usual we'll resort to an iterative optimization algorithm such as gradient descent or L-BFGS. Taking derivatives, one can show that the gradient is:
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They can be used as a testbed for controlled,
repeatable experiments that are difficult or
impossible to perform in a biological setting
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Figure 2. Evolutionary trajectories for fitness and mutation
rate on a complex fitness landscape. (A) Evolution of average log-
fitness+1 s.e.m. for treatments with the mutation rate fixed at
Uope=4.641 (black) and for treatments with variable mutation rates
starting at either 10 (red) or 1072 (blue). (B) Evolution of average log
genomic mutation rate=1 s.e.m. for treatments with variable mutation
rates starting at either 10 (red) or 10™% (blue). The black line indicates
the mutation rate that had produced the highest average fitness for
that time point.
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Figure 2: Performance comparison between the non-
generative encoding and the POL-systen generative encod-

ing.
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(a) Concept 1 at 5 x 5 (b) Concept 1at 7 x 7 (c) Concept 1 CPPN
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(d) Concept2at5 x 5 (e) Concept2at7 x 7 (f) Concept 2 CPPN

Figure 8: Equivalent Connectivity Concepts at Different Substrate Resolutions. Two connectivity concepts are
depicted that were evolved through interactive evolution. The CPPN that generates the first concept at 5 x 5 (a) and
T x T (b) is shown in (c). The CPPN in (f) similarly generates the second concept at both resolutions (d) and (e). This
illustration demonstrates that CPPNs represent a mathematical concept rather than a single structure. Thus, the same
CPPN can produce patterns with the same underlying concept at different substrate resolutions (i.e. different node
densities). CPPN activation functions in this paper are denoted by G for Gaussian, S for sigmoid, Si for sine, A for
absolute value, and L for linear.
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The Biology of Possible Life
» life-as-we-know-it vs. life-as-it-could-be
» Biology: study of life-as-we-know-it,based on carbon-chain
chemistry, the only kind of life available for study.

» Is it possible to derive general theories from single examples?

» Life,as a dynamic physical process, could “haunt” other physical
material. VWhat matters is the organization of such material.

Frank and Ernest
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