
Swarm and Evolutionary Computation 1 (2011) 61–70
Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

Survey paper

Surrogate-assisted evolutionary computation: Recent advances and
future challenges
Yaochu Jin
Department of Computing, University of Surrey, Guildford, Surrey, GU2 7XH, UK

a r t i c l e i n f o

Article history:
Received 6 February 2011
Received in revised form
20 April 2011
Accepted 14 May 2011
Available online 6 June 2011

Keywords:
Evolutionary computation
Surrogates
Meta-models
Machine learning
Expensive optimization problems
Model management

a b s t r a c t

Surrogate-assisted, or meta-model based evolutionary computation uses efficient computational models,
often known as surrogates or meta-models, for approximating the fitness function in evolutionary
algorithms. Research on surrogate-assisted evolutionary computation began over a decade ago and
has received considerably increasing interest in recent years. Very interestingly, surrogate-assisted
evolutionary computation has found successful applications not only in solving computationally
expensive single- or multi-objective optimization problems, but also in addressing dynamic optimization
problems, constrained optimization problems and multi-modal optimization problems. This paper
provides a concise overview of the history and recent developments in surrogate-assisted evolutionary
computation and suggests a few future trends in this research area.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

In most evolutionary algorithms, it is often implicitly assumed
that there exists a means for evaluating the fitness value of
all individuals in a population. In general, the fitness value
of an individual can be computed using an explicit fitness
function, a computational simulation, or an experiment. In
practice, however, fitness evaluations may become non-trivial.
Such situations typically occur when evolutionary algorithms are
employed to solve expensive optimization problems, where either
the computational simulation for each fitness evaluation is highly
time-consuming, or the experiments for fitness estimation are
prohibitively costly, or an analytical function for fitness evaluations
simply does not exist.

Surrogate-assisted evolutionary computation was mainly
motivated from reducing computational time in evolutionary op-
timization of expensive problems, such as aerodynamic design op-
timization [1] or drug design [2], where complex computational
simulations are involved.

In principle, surrogates should be used together with the
real fitness function, as long as such a fitness function exists to
prevent the evolutionary algorithm from being misled by a false
minimum introduced by the surrogates [3]. A strategy for properly
using the surrogates is often known as model management or
evolution control. In surrogate-assisted evolutionary optimization
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of expensive problems, in particular when the problems are
of high-dimension, the development of a model management
strategy remains a challenging research topic.

The remainder of the paper is organized as follows. Section 2
takes a brief look back at the history of surrogate-assisted evolu-
tionary computation starting from the late 1990s. Representative
model management strategies are discussed in Section 3, which
distinguish themselves into managing a single surrogate, homo-
geneous multiple surrogates, and heterogeneous multiple surro-
gates. Application of surrogates to addressing problems other than
expensive optimization in evolutionary computation is presented
in Section 4. Application examples ofmeta-model based evolution-
ary optimization are briefly accounted in Section 5. A few promis-
ing yet challenging research topics are suggested in Section 4. The
paper concludes with a brief summary in Section 7.

2. A brief look back

Research on evolutionary optimization using approximate
fitness evaluations was first reported in the mid-1980s [4],
and sporadic yet increasing research results on evolutionary
optimization using computational models for fitness estimation
appeared after the mid-1990s [5–9]. The first event devoted to
research on using surrogates in evolutionary optimization was
a workshop held in 2002 within the Genetic and Evolutionary
Computation Conference (GECCO) [10]. Since then, a series of
special sessions and workshops have been organized on the major
conferences including GECCO and IEEE Congress on Evolutionary
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Computation, and journal special issues have also been edited.
An overview of the research on surrogated-assisted evolutionary
optimization reported in various fields was first presented in
a conference paper [11], and then a journal paper in a special
issue [12]. A first tutorial on fitness approximation on evolutionary
optimization was given at the GECCO in 2005. Most recently, an
edited book on the use of surrogates in evolutionary computation
was also published [13].

In the review paper [12], the importance of managing
surrogates was emphasized for the first time to prevent the
evolutionary algorithms from being misled to a false optimum
that can be introduced in a surrogate. In that review, methods for
managing surrogates in evolutionary computation were divided
into three categories, namely, individual-based, generation-based
and population-based strategies. A variety of computational
models, including polynomials (also known as response surface
methodologies in the field of traditional design optimization),
Gaussian processes (also known as Kriging in traditional design
optimization), neural networks, together with data sampling
techniques such as design of experiments, active learning and
boosting were also presented. Practically, fitness inheritance from
parents or fitness imitation from siblings [14–16] can be seen as
a sort of simplified yet effective interpolation technique. General
issues such as the global and local approximation, approximation
of nonlinear constraints and the use of multiple surrogates having
various fidelities were discussed. Theoretical analysis of the
convergence properties was also raised.

Since the review paper [12], very encouraging research
progresses have been made in many of the areas, whereas
some issues remain unsolved, in particular with respect to a
rigorous theoretical support for the benefit for using surrogates
in evolutionary computation. Note that this paper focuses on
surrogates in evolutionary computation. Readers interested in
recent developments of surrogate-assisted design and analysis
methods are referred to [17,18].

The next section provides a brief overview of recent advances
in the research on surrogate-assisted evolutionary optimization,
emphasizing on the progresses made after the review paper [12].
Research on using surrogates beyond solving expensive problems
is discussed in Section 4. A few challenging topics for future
research are suggested in Section 6. A summary of the paper is
given in Section 7.

3. Strategies for managing surrogates

In most real-world optimization problems, no analytical
fitness function exists for accurately evaluating the fitness of
a candidate solution. Instead, there are only more accurate
and less accurate fitness estimation methods, which often
trade off accuracy with computational costs, as illustrated in
Fig. 1. For example, in evolutionary optimization of aerodynamic
structures [1], wind tunnel experiments may provide the most
accurate estimation of the quality of candidate designs. The cost
of such experiments is often prohibitively high. In addition, three-
dimensional (3-D) computational fluid dynamic (CFD) simulations
using Navier–Stokes equations may provide very accurate fitness
evaluations. Unfortunately, such CFD simulations are highly time-
consuming,which can take hours or evendays for one single fitness
evaluation. Computationally more efficient simulations can be
achieved by 2-D full simulations or even incomplete simulations.
By incomplete simulation, we mean that a simulation process is
stopped before it converges. The computationally most efficient
way for estimating fitness is the use of machine learning models,
i.e., surrogates. Note, however that this graphic only shows a
simplified version of actual levels of accuracy.
Fig. 1. An illustration of a trade-off between fidelity (approximation accuracy)
and computational cost. Usually, high-fidelity fitness evaluations are more time-
consuming. By contrast, low-fidelity fitness evaluations are often less time-
consuming.

In the research of surrogate-assisted evolutionary optimiza-
tion, most algorithms have been developed based on benchmark
problems, where it is assumed that fully accurate fitness evalu-
ations can be provided. Such fitness functions are often termed
‘‘real fitness function’’ or ‘‘original fitness function’’. In the follow-
ing, we use surrogates for denoting computational models con-
structed with data, whereas other approximate fitness techniques
such as full or incomplete 2-D CFD simulations are called prob-
lem approximations as termed in [12]. In addition, we do not dis-
tinguish between surrogate-assisted single objective optimization
and surrogate-assisted multi-objective optimization if the method
for model management does not differ.

In the early work on surrogate-assisted evolutionary opti-
mization, the evolutionary search is based solely on a surrogate,
assuming that the surrogate can provide sufficiently accurate fit-
ness evaluations. However, such assumptions can give rise to seri-
ous problems if the surrogate introduces optima that do not exist
in the original optimization problem. This issue was first explic-
itly raised in [3] to stress the importance of model management in
surrogate-assisted evolutionary optimization, mainly by using the
surrogate together with the real fitness function.

Surrogates can be applied to almost all operations of evolution-
ary algorithms, such as population initialization, cross-over, mu-
tation, local search and fitness evaluations, as illustrated in Fig. 2.
For instance, a surrogate can be used for filtering out poor solu-
tions in population initialization, crossover [19] or mutation [20].
The use of surrogates in initialization, mutation or crossover [21]
can reduce the randomness in the genetic operators, thus termed
informed operators. Most recently, a similar approach is adopted
for multi-objective optimization [22], where a single, aggregated
meta-model is built to pre-screen candidate solutions before fit-
ness evaluation. The requirement on the quality of surrogates is
minimum, as an estimated fitness that is better than a random
guess is adequate.

Techniques for managing surrogates for fitness evaluations
can generally be divided into individual-based, generation-based
and population-based [12]. By generation-based, we mean that
surrogates are used for fitness evaluations in some of the
generations, while in the rest of the generations, the real fitness
function is used [8,23,24,7]. By contrast, in individual-basedmodel
management techniques, the real-fitness function is used for
fitness evaluations for some of the individuals in a generation
[25,3,23]. In population-based approaches, more than one sub-
population co-evolves, each using its own surrogate for fitness
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Fig. 2. A diagram for an evolutionary algorithm for optimization of a turbine blade.
A star denotes an evolutionary operation where a surrogate can be helpful.

evaluations. Migration of individuals from one sub-population to
another is allowed.

A strategy closely related to the above methods is the
pre-selection strategy [26]. Pre-selection does not exactly fall
in individual-based strategies. Assume the population size is
λ. In pre-selection, an initial offspring population contains λ′

individuals, where λ′ > λ are produced in each generation. Then,
all λ′ offspring individuals are evaluated using the surrogate. Based
on the fitness value obtained using the surrogate, only λ offspring
are kept and re-evaluated using the original fitness function.
A main difference between individual-based strategies and pre-
selection here is that in pre-selection, selection is always based
on the real fitness value whereas in individual-based methods,
selectionmay be conducted partly based on fitness values from the
surrogate.

Themain steps of one specific individual-basedmodel manage-
ment method, termed best strategy, and the pre-selection method
for a (µ, λ) evolution strategy, (µ, λ)-ES, are illustrated in Fig. 3 (a)
and (b), respectively. In a (µ, λ)-ES using best strategy, all λ off-
spring are first evaluated using the surrogate. Then, λ⋆

≤ λ best
individuals according to the surrogate are re-evaluated using the
expensive real fitness function. As a result, it can happen that the
fitness value of some of the selected µ parents is based on the sur-
rogate. Contrary to that, in a (µ, λ)-ES using pre-selection, λ⋆

≥ λ
offspring are generated and then evaluated using the surrogate.
Then, λ best individuals are re-evaluated using the expensive real
fitness function. Consequently, all the selected µ parents for the
next generation are evaluated by the real fitness function.

A large category of surrogate-assisted evolutionary algorithms
use surrogates in local search only for both single [27,28] and
multi-objective optimization [29]. In this case, sophisticated
model management methods developed in traditional design
optimization [30], such as the trust-region method [31] can be
directly employed.

Recently, surrogates have also been used in stochastic search
methods other than evolutionary algorithms, such as surrogate-
assisted simulated annealing [32] or surrogate-assisted artificial
immune systems [33].

In the following, we discuss a few interesting ideas for model
management, which are divided into two major categories — use
of a single surrogate and multiple surrogates.

3.1. Managing a single surrogate

The essential question to answer in surrogate-assisted evolu-
tionary computation is which individuals should be chosen to be
evaluated or re-evaluated using the real fitness function. As we
a

b

Fig. 3. Two individual-based model management strategies. (a) Best strategy, and
(b) Pre-selection strategy.

assume fitness evaluations using the real fitness function is time-
consuming, the next question is how to adapt the number of in-
dividuals to be evaluated with the real fitness function so that the
time for fitness evaluations can be reduced as much as possible,
while the evolutionary algorithm can still find the global optimum.
In the following, we discuss a few issues related to the answer to
the above questions.

3.1.1. Criteria for choosing individuals for re-evaluation
The most straightforward idea is to evaluate those individuals

that potentially have a good fitness value and the higher the
approximation accuracy, the more often the surrogate can be
used [3,23]. A slightly different idea is that representative
individuals can be chosen for re-evaluation by clustering the
population into a number of crisp or fuzzy clusters. The individual
closest to each cluster center [34,15,35] or the best individual in
each cluster [36,37] can be chosen for re-evaluation.

It has also been suggested that individuals having a large degree
of uncertainty in approximation can be good candidates for re-
evaluation [25,26]. This idea can be justified by two arguments.
First, a large degree of uncertainty in approximation of the
individuals indicates that the fitness landscape around these
solutions has not been well explored and therefore may provide
a good chance of finding a better solution. Second, re-evaluation
of these solutions may be the most effective in improving the
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Fig. 4. Examples of surrogates that have a large approximation error but are
adequately good for evolutionary search. Solid curves denote the original function
and dashed curves are their approximation.

approximation accuracy of the surrogate, similar to the idea of
active learning [38].

The estimation of the approximation error can be achievedwith
different methods. In [25], the degree of uncertainty is roughly set
to be inversely proportional to the average distance to the closest
data samples used for constructing the surrogate. Alternatively, an
ensemble can be used for estimating the variance of the individual
estimates given by an ensemble of surrogates. The most often
used surrogate model for estimating model uncertainties is the
Gaussian processes [39], also known as the Kriging model [40].
Unlike deterministic models, Gaussian processes provide an
estimate of the fitness (mean) together with an estimate of the
uncertainty (variance), which is a statistically sound boundary
of the uncertainty in fitness estimation. Due to this property,
Gaussian processes have increasingly been employed as surrogates
in evolutionary single- and multi-objective optimization [41–44].
Note however, the computational cost for constructing Gaussian
processes itself can be very highwhen the number of samples used
is large and online learning of the Gaussian processes is non-trivial
when new samples are available.

3.1.2. Metrics for evaluating surrogates and adaptation
Not much attention has been paid to adapting the frequency

of using the surrogates. In [45], the model quality is estimated by
calculating the average approximation error after re-evaluation,
which is used to adapt the frequency of using the surrogate in a
generation-basedmodelmanagementmethod. Based on empirical
observations that large approximation errors must not mislead
the evolutionary search, see e.g., Fig. 4, a few metrics other than
approximation error have been proposed in [46,45] in evaluating
the quality of surrogates. In the following, we present a few
performance measures for surrogates in great detail.

The most common measure for model quality or model fidelity
is the mean squared error between the individual’s real fitness
value and the predicted fitness by themeta-model. However, from
the evolutionary perspective, selecting the right individuals for
the next generation is the main concern. For instance in Fig. 4,
the quality of the surrogate is poor in terms of approximation
accuracy. However, an evolutionary algorithm searching on the
surrogate only will nevertheless find the right optimum. Consider
(µ, λ)-selection with λ ≥ 2µ, which is of particular relevance
in evolutionary optimization of complex real-world problems, the
number of individuals that have been selected correctly using the
surrogate can be obtained by:

ρ(sel.)
=

ξ − ⟨ξ⟩

µ − ⟨ξ⟩
, (1)

where ξ (0 ≤ ξ ≤ µ) is the number of correctly selected
individuals, i.e., the number of individuals that would have also
been selected if the real fitness function was used for fitness
evaluations. The expectation

⟨ξ⟩ =

µ−
m=0

m


µ

m

 
λ−µ

µ−m




λ

µ


=

µ2

λ
(2)

of ξ in case random selection is used as a normalization in (1). It
can be seen that if all µ parent individuals are selected correctly,
the measure reaches its maximum of ρ(sel.)

= 1, and that negative
values indicate that the selection based on the surrogate is worse
than a random selection.

The measure ρ(sel.) only evaluates the absolute number of
correctly selected individuals. If ρ(sel.) < 1, the measure does
not indicate whether the (µ + 1)-th or the worst offspring
individual has been selected, whichmay have significant influence
on the evolutionary process. Therefore, the measure ρ(sel.) can be
extended to include the rank of the selected individuals, calculated
based on the real fitness function. A surrogate is assumed to be
good, if the rank of the selected individuals based on the model
is above-average according to the rank based on the real fitness
function.

The definition of the extendedmeasureρ(∼sel.) is as follows: The
surrogate achieves a grade of λ − m, if the m-th best individual
based on the real fitness function is selected. Thus, the quality of
the surrogate can be indicated by summing up the grades of the
selected individuals, which is denoted by π . It is obvious that π
reaches its maximum, if all µ individuals are selected correctly:

π (max.)
=

µ−
m=1

(λ − m)

= µ


λ −

µ + 1
2


. (3)

Similar to (1) the measure ρ(∼sel.) is defined by transforming π
linearly, using the maximum π (max.) as well as the expectation
⟨π⟩ =

µλ

2 for the case of a purely random selection:

ρ(∼sel.)
=

π − ⟨π⟩

π (max.) − ⟨π⟩
. (4)

Besides these two problem-dependent measures for evaluating
the quality of the surrogate, two established measures – the
rank correlation and the (continuous) correlation – partially fit
the requirements formulated above. The rank correlation can be
expressed by

ρ(rank)
= 1 −

6
λ∑

l=0
d2l

λ(λ2 − 1)
, (5)

is a measure for the monotonic relation between the ranks of two
variables. In our case, dl is the difference between the ranks of the l-
th offspring individual based on the original fitness function and on
the approximate model. The range of ρ(rank) is the interval [−1; 1].
The higher the value of ρ(rank), the stronger the monotonic relation
with a positive slope between the ranks of the two variables.
In contrast to ρ(∼sel.), the rank correlation does not only take
the ranking of the selected individuals, but also the ranks of all
individuals into account.

A slightly different quality measure can be defined by
calculating the (continuous) correlation between the surrogate and
the original fitness function.

Using the selection-based criterion [45] for evaluating surro-
gates, an adaptation scheme has been suggested for adapting the
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Fig. 5. An illustration of learning iterative fitness evolutionary process using
recurrent neural networks for predicting converged fitness value.

number of individuals to be evaluated using the surrogate (λ′) [47].
It has been shown that λ′ increases as the evolution proceeds, in-
dicating that the quality of the surrogates improves. Interestingly,
when noise is introduced into the fitness data samples, λ′ first de-
creases and then increases again. The various selection based cri-
teria suggested in [45] have been benchmarked for adapting the
number of individuals to be re-evaluated by the real fitness func-
tion [37]. The results, however, failed to show a clear advantage of
any particular criterion.

3.1.3. Improving approximation accuracy
Although approximation quality is not the only criterion for

surrogates for fitness prediction in evolutionary optimization,
improving its approximation quality is desirable. Much work has
been reported along this line. For example, in [3,23], regularization
of the neural network model has been suggested to alleviate
overfitting. Structure and parameter optimization of the surrogate
can co-evolve with the original optimization problem [46,48].

One of the main difficulties in improving the approximation
accuracy can be attributed to the high-dimensionality in the design
space. To overcome this difficulty, the surrogate can be built up
in a new space of a lower dimension using dimension reduction
techniques [49,50].

It is noticed that in many expensive optimization problems,
the fitness evaluation often consists of an iterative computation
process, such as the numerical solution of differential equations
in computational fluid dynamics simulations. In such cases,
many intermediate data will be produced before the simulation
converges. Such intermediate data can also be used for training
a surrogate in the first iterations and then the surrogate can be
used for predicting the converged fitness [51]. An example of such
a process is illustrated in Fig. 5.

3.2. Managing multiple surrogates

Methods for multiple surrogates in evolutionary optimization
distinguish themselves in type and fidelity of the surrogates. For
example, a neural network ensemble has been used in [34], where
all ensemblemembers are of the same type of feed-forward neural
networks. Alternatively, multiple surrogates of different types,
such as polynomials, support vectormachines andneural networks
can be used [52].

A step further is to use surrogates of different fidelities.
Surrogates of different fidelities can be obtained by usingmodels of
different complexities or different data sets. For instance, different
types of training samples used for constructing the surrogates
can be generated from different problem approximations, such as
wind-tunnel experiments, 3-D or 2-D CFD simulations. Another
way of generating surrogates of heterogeneous fidelity is to control
the complexity of the surrogates explicitly, e.g., by using a different
number of training samples or by controlling themodel complexity
with regularized learning [3] or a Pareto-based multi-objective
learning method [53].

In the following, we discuss the use of multiple surrogates in
evolutionary optimization by dividing the methods into homoge-
neous and heterogeneous multiple surrogates. By homogeneous
multiple surrogates, the fidelity of the surrogates are not explic-
itly controlled, even if different types of surrogates are used. On
the contrary, heterogeneous surrogates vary in their fidelity due to
an explicit control in model complexity or training data.

3.2.1. Homogeneous multiple surrogates
Use of ensembles for fitness approximation was suggested

in [34], where it was shown that neural network ensembles
can improve the performance of surrogate-assisted evolutionary
optimization in two aspects. First, ensembles can improve the
quality in fitness prediction. Second, the variance of the predicted
fitness of the ensemblemembers can help identify large prediction
errors so that false optima can be avoided.

The benefit of using multiple surrogates has also been shown
empirically in many papers [54,55,52]. In this category of research,
no explicit control of fidelity of the multiple surrogates is
employed. For example in [56,57] multiple surrogates such as
Kriging, polynomials, radial-basis-function networks (RBFN), and
weighted average ensemble are used to demonstrate the improved
robustness of optimization. Polynomial and RBFN surrogates are
employed for multiobjective optimization and it was shown that
each of the models performs better in different regions of the
Pareto front.

Multiple surrogates have been used in evolutionary multi-
objective optimization [58]. In that work, a co-evolutionary
genetic algorithm for multiple-objective optimization based on
surrogates was introduced. After some fixed search intervals, the
surrogates that approximate different objectives are exchanged
and shared amongmultiple sub-populations of genetic algorithms.
Spatially distributedmultiple surrogates have been used for fitness
approximation in multi-objective optimization [59].

3.2.2. Heterogeneous multiple surrogates
As illustrated in Fig. 1, in many real-world optimization

problems, various problem approximation techniques can be
employed. For example, in aerodynamic optimization 3-D or 2-D
numerical simulations can be used for estimating the quality of the
designs in addition to wind tunnel experiments. In more extreme
situations, incomplete simulations can also be used, where a
numerical simulation is stopped earlier to reduce computation
time. Data from all these different processes can also be applied
for building up surrogates.

The motivation of explicitly controlling the fidelity of the
surrogates can also be justified by taking the computational costs
of constructing surrogates into account. To reduce the cost for
building up surrogates, it makes good sense to use surrogates of a
lower fidelity that can be obtained with less cost in the early stage
of evolutionary optimization. Another more tricky motivation is to
take advantage of approximation errors introduced by surrogates,
hoping to smoothen a rugged fitness landscape, or to increase the
diversity of the population, or simply to use data from incomplete
simulations.

Early work that uses heterogeneous multiple surrogates was
reported in [60,61], where a population-basedmodelmanagement
strategy is used. In both papers, three sub-populations are used,
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each using a surrogate for fitness evaluations. In [60], individuals
from a sub-population that use a surrogate of lower fidelity are
allowed to migrate to the sub-population that uses a surrogate of
higher fidelity. The method presented in [61] is a minor variant
of [60], where migration is allowed between all sub-populations.

One approach to reducing the computational cost for construct-
ing surrogates is to use coarse surrogates (of lower fidelity) in
the early stage of the optimization and increase the quality of the
surrogate gradually as the search proceeds [6]. This idea of using
coarse-to-fine surrogates has been introduced into a surrogate-
assisted evolutionary search in [42,62], where surrogates are used
for evolutionary multi-objective optimization.

A more subtle way to control the fidelity of surrogates is to
use surrogates of a sufficiently good fidelity based on a correlation
based measure [63]. The fidelity control strategy was applied
to a memetic algorithm in which the local search is based on
surrogates of a changing fidelity. The proposed method was
evaluated empirically on an aerodynamic airfoil design problem
and demonstrated that the use of a dynamic fidelity is able to
improve the search speed.

The idea of taking advantage of approximation errors intro-
ducedby surrogateswas further exploited in [64]. In thatwork, two
types of surrogates are used in the local search of an evolutionary
multi-objective optimization: One for getting a reliable local
prediction and the other for a higher degree of diversity. Empir-
ical results show that an evolutionary search based on hetero-
geneous multiple models can considerably improve the search
performance, compared to surrogate-assisted evolutionary algo-
rithms that use a single surrogate or homogeneous multiple
surrogates. Interestingly enough, the proposed algorithm also out-
performs its counterpart that uses an artificial perfect surrogate.
Detailed analysis of the search processes confirmed the hypothe-
sis that controlled approximation errors introduced by surrogates
can speed up the search process in both single- andmulti-objective
optimization.

3.3. Which model management strategy?

As we discussed above, surrogates can be used in population
initialization, crossover, mutation and preselection to pre-screen
candidate solutions. The advantage of these relatively conservative
approaches to using surrogates is that they are less likely to
mislead the search process. One concern might be that they may
cause premature convergence. It is also less risky if a surrogate is
used in a local search of memetic algorithms. The common feature
of these approaches is that all individuals have been re-evaluated
using the original fitness function before selection.

In addition, among the model management strategies, the
individual-based model management may be more suited for
steady state evolution, or generational evolution implemented on
a single machine. By contrast, population-based and generation-
basedmodel management is better for parallel implementation on
heterogeneous machines having different speeds. An optimization
strategy may be desirable when multi-level surrogates having
different computational complexities are used onmachines having
different computational powers.

4. Beyond evolutionary optimization of expensive problems

In addition to reducing the computation time in evolutionary
optimization of expensive problems, surrogates can be useful in
addressing other problems in evolutionary computation, such as
the use of surrogates for reducing fitness evaluations in search of
robust optimal solutions [65]. In addition, surrogates have been
found helpful in improving the efficiency of evolutionary algo-
rithms for solving optimization with noisy fitness evaluations [66]
or for solving multi-modal optimization with a very rugged fit-
ness landscape [6,67], where the purpose of using a surrogate is
to smoothen the fitness landscape.
4.1. Surrogates in interactive evolutionary computation

In interactive evolutionary computation, the fitness value of
each individual is evaluated by human user subjectively [68].
Human fitness evaluations are necessarywhere no fitness function
is available. For instance, when evolutionary algorithms are used
for aesthetic product design or art design. One main challenge of
interactive evolutionary computation is the issue of human fatigue.
To address this problem to a certain degree, surrogates can be used
to replace in part human evaluations. The main idea is to use a
machine learning model to predict the fitness value the human
may assign to a design based on history data [69–71].

4.2. Surrogated-assisted evolution for solving dynamic optimization

Evolutionary optimization of dynamic optimization problems
has become a popular research topic recently [12]. The primary
goal is to develop an evolutionary search strategy that can follow a
moving optimum or a moving Pareto front. To this end, a certain
degree of diversity in the population should be maintained or
a memory mechanism must be embedded in the evolutionary
algorithm.Memorymechanisms include sub-populations, archives
of optimal solutions found so far, or multiploidy in genetic
representation.

In addition to memory and diversity based strategies, antici-
pation and prediction of the change in the fitness function can
be helpful in solving dynamic problems more efficiently. In such
strategies, a surrogate can be helpful in learning the changing fit-
ness function [72–74].

4.3. Surrogates for robust optimization

In evolutionary optimization of real-world problems, one is
concerned not only with the performance of the obtained optimal
solution, but also the sensitivity of the performance to small
changes in the design variables or in the environment. If an optimal
solution is insensitive to such changes, the solution is known as
robust optimization.

To obtain robust optimal solutions using evolutionary algo-
rithms, either implicit averaging or explicit averaging can be
used [12], wherein an assumption on the probability distribution
of the noise is often made. By contrast, one can predefine the al-
lowed performance decrease and then search for an optimum that
has the maximum tolerance of changes in the design variables,
which is termed inverse robust optimization [75]. In both explicit
averaging based or inverse robust optimization, additional fitness
evaluations are needed. To enhance the efficiency, some of these
additional fitness evaluations can be done based on a surrogate
[76–78].

4.4. Surrogates for constrained optimization

Many optimization problems are subject to constraints. To
judge if a candidate solution is feasible, the constraint functions
need to be frequently evaluated. Therefore, if the evaluations
of constraint functions are time-consuming, it is desirable to
replace the constraint functions with computationally efficient
approximate models [79].

In some real-world applications, an explicit constraint is not
available. For example in aerodynamic optimization, some of the
candidate designs may result in unstable computational fluid
dynamic (CFD) simulations. In order to reduce the number of
unnecessary, time-consuming CFD simulations, it is very helpful
to judge whether a solution is feasible (e.g., converges in a CFD
simulation) before it is evaluated in a CFD simulation. Surrogates
can be used for this purpose [80,81].

An interesting idea of using surrogates in constrained opti-
mization has been recently reported in [82], where surrogates are
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Fig. 6. An illustrative example of manipulating the constraints to facilitate
evolutionary search [82]. (a) The true feasible region (shaded), which consists of
three separate sub-regions. (b) A linear approximation of the original constraints
by using two data points, resulting in an enlarged single feasible region. (c) A more
accurate approximation of the constraint functions and the resulting feasible region
is close to real one.

applied to manipulate the shape and size of the feasible region to
ease the solution of highly constrained optimization problems. The
basic idea is to deliberately enlarge the feasible region by build-
ing up a very simple surrogate for each constraint function. As the
evolutionary optimization proceeds, the complexity of the surro-
gates increases gradually so that the approximated feasible region
can converge to the real feasible region. An illustration of this ba-
sic idea is given in Fig. 6. Simulation results on a set of benchmark
problems and a few structural design problems demonstrated that
the idea works well. Genetic programming based generation of in-
creasingly complex surrogates has also been reported [83].

5. Real-world applications

Surrogate-assisted evolutionary optimization is more
application driven. Thus, the effectiveness of surrogate-assisted
evolutionary algorithms need to be demonstrated in real-world
applications. One intensively researched area is surrogate-assisted
design optimization, such as turbine blades [9,23,84,85], air-
foils [27,86], forging [87], vehicle crash tests [88], multi-processor
systems-on-chip design [89] and injection systems [90]. Other ap-
plications include drug design [2], protein design [5], hydroinfor-
matics [91] and evolutionary robotics [92]. We must note that
not many substantial successful applications of meta-model based
evolutionary optimization have been reported, which, however
does not necessarilymeanno suchwork has been done. Somework
carried out in industry has not been published. We also want to
note that meta-model based evolutionary optimization has been
included in a few commercial design software tools.

6. Future challenges

Surrogate-assisted evolutionary computation has achieved
considerable advances over the past decade, not only in algorithm
design, but also in real-world applications. Nevertheless, many
challenges remain to be addressed. In the following, we discuss a
few of these challenges and hope that these discussionswill trigger
more research efforts devoted to approaching these challenges.

6.1. Theoretic work

A wide range of trust-region methods have shown to converge
to the global optimum [93] when a gradient-based method is
used to search on the surrogate. Unfortunately, a convergence
proof for surrogate-assisted evolutionary algorithms to the global
optimum or to a local optimum is not straightforward, as a proof
of any stochastic search algorithm to a global optimum is non-
trivial. Meanwhile, approximation errors introduced by surrogates
can usually neither be described by a Gaussian nor a uniform
distribution, which makes a quantitative analysis of the search
dynamics on a surrogate very difficult, if not impossible.

If we go one step back, we may raise the question of whether
we can guarantee that a surrogate-assisted evolutionary algorithm
converges faster than its counterpart without using a surrogate
using the same number of expensive fitness evaluations. Again, no
theoretical work has been reported to show this.

6.2. Multi-level, multi-fidelity heterogeneous surrogates

Use of multi-level, multi-fidelity surrogates has already been
suggested in [12]. The heterogeneity can include themodel type of
the surrogates and the degree of fidelity (modeling accuracy). On
the one hand, various surrogates, ranging from the deterministic
linear model (e.g., linear interpolation) to nonlinear models
(e.g. feedforward neural networks, support vector machines)
and to stochastic models, such as Gaussian processes (Kriging)
and to dynamic models such as recurrent neural networks.
Meanwhile, multi-fidelity models can be used either by using data
from different problem approximations (e.g., 2D Navier–Stokes
simulations and 3D Navier–Stokes simulations) or experiments,
or different degrees of incomplete simulations, or by deliberately
controlling the complexity of the models.

When heterogeneous surrogates are used, the computational
times for fitness evaluations using different models can be very
different. To further improve the computational efficiency of
the whole evolutionary process, non-generational evolutionary
algorithms with grid-based or asynchronous computing structure
may be preferred [86,56].

6.3. Surrogate-assisted combinatorial optimization

Surrogate-assisted evolutionary algorithms have been studied
extensively for continuous optimization. In real-world applica-
tions, however, there are also many computationally intensive
combinatorial optimization problems, such as job shop scheduling
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and wireless network or mobile sensor network optimization. In
such cases, discrete modeling techniques must be employed, e.g.,
binary neural networks [94]. In [95], an RNF neural network is ap-
plied to assist a mixed integer evolution strategy for intravascu-
lar ultrasound image analysis [95]. Recently, an integrated Kriging
model is used for mobile network optimization [96].

6.4. Surrogate-assisted dynamic optimization

If an expensive optimization is time-varying, evolutionary
algorithms for solving dynamic optimization problems must be
adopted to track the moving optima or moving Pareto front [97].
Practically, an optimal solution that is robust over time may be
more preferred [74]. In either case, the surrogate must be updated
online. Therefore, it may be of interest to introduce incremental
learning techniques [98] for efficient online learning when the
objective functions change over time.

6.5. Rigorous benchmarking and test problems

Although many surrogate-assisted evolutionary algorithms
have been proposed and demonstrated to be more efficient than
their counterpart without using a surrogate, no rigorous compar-
ative studies on surrogate-assisted evolutionary algorithms have
been reported. This may be attributed to two reasons. First, no
widely accepted performance index for benchmarking surrogate-
assisted evolutionary algorithms has been suggested. Second, no
benchmark problems dedicated to surrogate-assisted evolutionary
algorithms have been proposed. Most work on surrogate-assisted
evolutionary algorithms uses either standard test functions such
as the Ackley function [99] or specific real-world applications for
empirical evaluations. However, design of test problems relevant
to real-world applications is non-trivial. Ideally, such test prob-
lems should reflect themajor difficulties in real-world applications
yet tractable for intensive empirical comparisons. As indicated
in [1], expensive optimization problems such as aerodynamic de-
sign optimization not only involve highly time-consuming fitness
evaluations, the fitness landscape is often multi-modal as well. In
addition, the CFD simulations may be unstable, resulting in many
isolated infeasible solutions. Finally, the design space is very high
and geometry representation may be critical for the efficiency of
the whole evolutionary design optimization.

7. Summary

Surrogate-assisted evolutionary algorithms aremotivated from
real-world applications. As evolutionary algorithms are increas-
ingly applied to solving complex problems, research interests in
surrogate-assisted evolutionary algorithms have considerably in-
creased in recent years. This paper provides a brief overview of
recent advances in this research area and suggests a few chal-
lenging issues that remain to be resolved in the future. We ex-
pect that successful resolution of these challenges heavily depends
on the progress in both optimization and learning, and new com-
puting techniques such as grid computing [100] and cloud com-
puting [101], with which more computing resources will be made
available to common users via computer networks.
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