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ABSTRACT

Organisms result from adaptive processes interacting across different time scales. One such interaction is that between
development and evolution. Models have shown that development sweeps over several traits in a single agent, sometimes
exposing promising static traits. Subsequent evolution can then canalize these rare traits. Thus, development can, under the
right conditions, increase evolvability. Here, we report on a previously unknown phenomenon when embodied agents are
allowed to develop and evolve: Evolution discovers body plans robust to control changes, these body plans become genetically
assimilated, yet controllers for these agents are not assimilated. This allows evolution to continue climbing fitness gradients
by tinkering with the developmental programs for controllers within these permissive body plans. This exposes a previously
unknown detail about the Baldwin effect: instead of all useful traits becoming genetically assimilated, only traits that render the
agent robust to changes in other traits become assimilated. We refer to this as differential canalization. This finding also has
implications for the evolutionary design of artificial and embodied agents such as robots: robots robust to internal changes in
their controllers may also be robust to external changes in their environment, such as transferal from simulation to reality or
deployment in novel environments.

Introduction
The shape of life changes on many different time scales. From generation to generation, populations gradually increase in
complexity and relative competency. At the individual level, organisms grow from a single-celled egg and exhibit extreme
postnatal change as they interact with the outside world during their lifetimes. At a faster time scale still, organisms behave
such as to survive and reproduce.

Many organisms manifest different traits as they interact with their environment. It seems wasteful not to utilize this extra
exploration to speed the evolutionary search for good genotypes. However, to communicate information from these useful
but temporary traits to the genotype requires inverting the generally very complex, nonlinear and stochastic mapping from
DNA to phenotype. Inverting such a function would be exceedingly difficult to compute. However, organisms can pass on their
particular capacity to acquire certain characteristics. Thus phenotypic plasticity can affect the direction and rate of evolutionary
change by influencing selection pressures. Although this phenomenon was originally described by Baldwin1, Morgan2 and
Waddington3, among others, it has become known as ‘the Baldwin effect’. In Baldwin’s words: ‘the most plastic individuals
will be preserved to do the advantageous things for which their variations show them to be the most fit, and the next generation
will show an emphasis of just this direction in its variations’1. In a fixed environment, when the ‘advantageous thing’ to do is to
stay the same, selection can favor genetic variations which more easily, reliably, or quickly produce these traits. This can lead
to the genetic determination of a character which in previous generations needed to be developed or learned.

Thirty years ago, Hinton and Nowlan4 provided a simple computational model of the Baldwin effect that clearly demon-
strated how phenotypic plasticity could, under certain conditions, speed evolutionary search without communication to the
genotype. They considered the evolution of a bitstring that is only of value when perfectly matching a predefined target string.
The search space therefore has a single spike of high fitness with no slope leading to the summit. In such a space, evolution is
no better than random search.

Hinton and Nowlan then allowed part of the string to randomly change at an additional (and faster) developmental time
scale. When the genetically specified portion of the string is correct, there is a chance of discovering the remaining portion in
development. The speed at which such individuals tend to find the good string will be proportional to the number of genetically
determined bits. When the target string is found, development stops and the individual is rewarded for the amount of remaining
developmental time. This has the effect of creating a gradient of increasing fitness surrounding the correct specification that
natural selection can easily climb by incrementally assimilating more correct bits to the genotype.
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Hinton and Nowlan imagined the bitstring as specifying the connections of a neural network in a very harsh environment.
We are also interested in this interaction of subsystems unfolding at different time scales, but consider an embodied agent
situated in a physically-realistic environment rather than an abstract control system. This distinction is important as it grounds
our hypotheses in the constraints and opportunities afforded by the physical world. It also allows us to investigate how changes
in morphology and control might differentially affect the direction or rate of evolutionary search. More specifically, it exposes
the previously unknown phenomenon of differential canalization reported here.

Inspired by Hinton and Nowlan, Floreano and Mondada5 explored the interaction between learning and evolution in mobile
robots with a fixed body plan but plastic neural control structure. They noted that the acquisition of stable behavior in ontogeny
did not correspond to stability (no further change) of individual synapses, but rather was regulated by continuously changing
synapses which were dynamically stable. In other words, agents exploited this ontogenetic change for behavior, and this
prevented its canalization. In this paper, we structure development in a way that restricts its exploitation for behavior and
thus promotes the canalization of high performing static phenotypes. Also, the robot’s body plan was fixed in Floreano and
Mondada’s experiments5, whereas in the work reported here, evolution and development may modify body plans.

Several models that specifically address morphological development of embodied agents have been reported in the
literature6–9. However, the relationship between morphological development and evolvability is seldom investigated in such
models. Moreover, there are exceedingly few cases that considered postnatal change to the body plan (its resting structural
form) as the agent behaves and interacts with the environment through physiological functioning (at a faster time scale).

We are only aware of four cases reported in the literature in which a simulated robot’s body was allowed to change while
it was behaving. In the first two cases10, 11, it was not clear whether this ontogenetic morphological change facilitated the
evolution of behavior. Later, Bongard12 demonstrated how such change could lead to a form of self-scaffolding that smoothed
the fitness landscape and thus increased evolvability. This ontogenetic change also exposed evolution to much more variation
in sensor-motor interactions which increased robustness to unseen environments. Recently, Kriegman et al.13 showed how
development can sweep over a series of body plans in a single agent, and subsequent heterochronic mutations canalize the most
promising body plan in more morphologically-static descendants.

We are not aware of any cases reported in the literature to date in which a simulated robot’s body and control are
simultaneously allowed to change while it is behaving. In this paper, we investigate such change in the morphologies and
controllers of soft robots as they are evolved for coordinated action in a simulated 3D environment. By morphology we mean
the current state of a robot’s shape, which is slowly changed over the course of its lifetime by a developmental process. We
distinguish this from the controller, which sends propagating waves of actuation throughout the individual, which also affects
the instantaneous shape of the robot but to a much smaller degree. We here refer to these two processes as ‘morphology’ and
‘control’. As both processes change the shape, and thus behavior, of the robot, this distinction is somewhat arbitrary. However,
the central claim of this paper, which is that some traits become canalized while others do not, is not reliant on this distinction.

We use soft robots because they provide many more degrees of morphological freedom compared to traditional robots
composed of rigid links connected by rotary or linear actuators. This flexibility allows soft robots to accomplish tasks that
would be otherwise impossible for their rigid-bodied counterparts, such as squeezing through small apertures14 or continuously
morphing to meet different tasks. Recent advancements in materials science are enabling the fabrication of 3D-printed muscles15

and nervous systems16. However, there are several challenges to the field of soft robotics, including an overall lack of design
intuition: What should a robot with nearly unbounded morphological possibility look like, and how can it be controlled?
Controllability often depends on precision actuation and feedback control, but these properties are difficult to maintain in soft
materials in which motion in one part of the robot can propagate in unanticipated ways throughout its body17.

We present here a minimally complex but embodied model of morphological and neurological development. This new
model represents an alternative approach to the challenging problem of soft robot design and presents an in silico testbed for
hypotheses about evolving and developing embodied systems. This model led to the discovery of differential canalization and
how it can increase evolvability.

Results
All experiments were performed in the open-source soft-body physics simulator Voxelyze, which is described in detail by Hiller
and Lipson18. We consider a locomotion task, over flat terrain, for soft robots composed of a 4×4×3 grid of voxels (Fig.
1). Robots are evaluated for 40 actuation cycles at 4 Hz, yielding a lifetime of ten seconds. Fitness is taken to be distance
traveled measured in undeformed body lengths (four unit voxels, i.e. 4 cm). Example robots are shown in Figures 1 and 5, and
Supplementary Video S1.

The morphology of a robot is given by the resting length of each voxel. However the shape and volume of each voxel
is changed by external forces from the environment and internal forces via behavior. The morphology of a robot is denoted
by the 4×4×3 = 48-element vector `, where each element is the resting length of that voxel (with possible values within
1.0±0.75 cm). Like most animals, our robots are bilaterally symmetrical. The lefthand 2×4×3 = 12 resting voxel lengths are
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Figure 1. Modeling development. An evolved soft robot changes its shape during its lifetime (postnatal development), from
a walking quadruped into a rolling form. Evolution dictates how a robot’s morphology develops by setting each voxel’s initial
(`k) and final (`∗k) resting length. The length of a single voxel k is plotted to illustrate its (slower) growth and (faster) actuation
processes. Voxel color indicates the current length of that cell: the smallest voxels are blue, medium sized voxels are green, and
the largest voxels are red. As robots develop and interact with a physically realistic environment, they generate heterogeneous
behavior in terms of instantaneous velocity (bottom arrows). Soft robot evolution, development and physiological functioning
can be seen in Supplementary Video S1.

reflected on the other, righthand side of the midsagittal line, yielding 24 independent resting lengths. The controller, however, is
not constrained to be symmetrical since many behaviors, even for symmetric morphologies, consist of asymmetric gaits, and is
given by the phase offset of each voxel from a global oscillating signal with an amplitude of 0.14 cm. The controller is denoted
by the 48-element vector φ , where each element is the phase offset of that voxel (with possible values within 0±π/2).

We investigated the impact of development in this model by comparing two experimental variants: Evo and Evo-Devo
(schematized in Supplementary Fig. S2). The control treatment, Evo, lacks development and therefore maintains a fixed
morphology and control policy in a robot as it behaves over its lifetime. Two parameters per voxel are sufficient to specify
an evolved robot at any time t in its lifetime: its morphology `k, and controller φk. An evolutionary algorithm optimizes 24
morphological and 48 control parameters.

The experimental treatment Evo-Devo evolves a developmental program rather than a static phenotype (Fig. 1). For each
parameter in an Evo robot, an Evo-Devo robot has two: its starting and final value. The evolutionary algorithm associated with
the Evo-Devo treatment thus optimizes 48 morphological and 96 control parameters. The morphology and controller of the kth

voxel change linearly from starting to final values, throughout the lifetime of a developing robot. The starting and final points
of development are predetermined by a genome which in turn fixes the direction (compression or expansion) and rate of change
for each voxel. Development is thus ballistic in nature rather than adaptive, as it cannot be influenced by the environment.

For both treatments we conducted 30 independent evolutionary trials. At the end of evolutionary optimization, the non-
developmental robots (Evo) tend to move on average with a speed of 10 body lengths in 10 seconds, or 1 length/sec. The evolved
and developing robots (Evo-Devo) tend to move at over 5 lengths/sec (Fig. 2A). To ensure evolved and developing robots are
not exploiting some unfair advantage conferred by changing body plans and control policies unavailable to non-developmental
robots, we manually remove their development by setting `∗ = ` and φ ∗ = φ , which fixes the structure of their morphologies
and controllers at birth (t = 0). The resulting reduced robots suffer only a slight (and statistically non-significant) decrease in
median speed and still tend to be almost five times faster than the systems evolved without development (Fig. 2B, treatment
‘Evo-Devo removed’). Ballistic development is therefore beneficial for search but does not provide a behavioral advantage in
this task environment.

To investigate this apparent search advantage, we trace development and fitness across the 30 lineages which produced a
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Figure 2. Evolvability and development. Morphological development drastically increases evolvability (A), even when
development is manually removed from the optimized systems by setting the final parameter values equal to their starting
values (`∗k = `k and φ ∗k = φk), in each voxel (B). Median fitness is plotted with 95% bootstrapped confidence intervals for three
treatments: evolving but non-developmental robots (Evo), evolving and developing robots (Evo-Devo), and evolving and
developing robots evaluated at the end of evolution with their development removed (Evo-Devo removed). Fitness of just the
final, evolved populations are plotted in B.

‘run champion’: the robot with highest fitness at the termination of a given evolutionary trial (Supplementary Fig. S1). The
developmental window is defined separately for morphology (Equation 3) and control (Equation 4) as the absolute difference in
starting and final values summed across the robot and divided by the total amount of possible development, such that 0 and 1
indicate no and maximal developmental change, respectively. Evo robots by definition have development windows of zero, as
do Evo-Devo robots that have had development manually removed. An Evo-Devo robot with a small developmental window
has thus become canalized3. In terms of fitness, there were two observed basins of attraction in average velocity: a slower
design type which either trots or gallops at a speed of less than 1 length/sec (Fig. 5A,B and Fig. 3A∗), and a faster design type
that rolls at 5-6 lengths/sec (Fig. 5C). After ten thousand generations, 25 out of a total of 30 Evo-Devo trials (83.3%) find the
faster design, compared to just 6 out of 30 Evo trials (20%).

Differential canalization.
Modular systems are more evolvable than non-modular systems because they allow evolution to improve one subsystem without
disrupting others19, 20. Modularity may be a property of the way a system is built, or it may be an evolved property. The robots
evolved here are by definition modular because the genes which affect morphology are independent of those which affect its
control. However the more successful Evo-Devo lineages evolved an additional form of modularity, which we term differential
canalization: Some initially developmentally plastic traits become integrated and canalized, while other traits remain plastic.

In the successful Evo-Devo trials, morphological traits were canalized while control traits were not. Evidence for this is
provided in Supplementary Fig. S1 (which is summarized in Fig. 3A). Trajectories of controller development (green curves) do
not follow any discernible pattern and appear upon visual inspection to be consistent with a random walk or genetic drift. The
trajectories of morphological development (red curves), however, follow a consistent pattern. The magnitude of morphological
development increases slightly, but significantly (p < 0.001), before decreasing all the way to the most recent descendant,
which is the most fit robot from that trial (the run champion). The morphological development window of the most fit robot
is significantly less than the starting morphological development window (p < 0.001), but there is no significant difference
between starting and final control development windows. Furthermore, this pattern tends to correlate with high fitness: in trials
in which this pattern did not appear (runs 6, 8, 16-18), fitness did not increase appreciably over evolutionary time.

This process within the lineages of the run champions is consistent with a more general correlation found in all designs
explored during optimization across all runs: Individuals with the highest fitness values tend to have very small amounts
of morphological development, while their control policies are free to develop (Fig. 3B). However, despite the fact that
morphological development tends to be canalized in the most fit individuals, it cannot simply be discarded as the non-
developmental systems have by definition small morphological windows, and small controller windows, but also low fitness.

To test the sensitivity of the canalized morphologies to changes in their control policies, we applied a random series of
control mutations to the Evo and Evo-Devo run champions for each of the 30 evolutionary trials. For each run champion, we
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Figure 3. Differential canalization. Developmental windows (i.e. the total lifetime developmental change) for morphology,
WL (see Equation 3), and controller, WΦ (see Equation 4), alongside fitness F . (A) Three representative lineages taken from
Supplementary Fig. S1, which displays the lineages of all 30 Evo-Devo run champions. Evolutionary time T moves from the
oldest ancestor (left) to the run champion (right). A general trend emerges wherein lineages initially increase their
morphological development in T (rising red curves) and subsequently decrease morphological development to almost zero
(falling red curves). Five of the 30 evolutionary trials, annotated by ∗, fell into a local optima. (B) Median fitness as a function
of morphology and controller development windows (WL, WΦ), for all Evo-Devo designs evaluated. Overall, the fastest designs
tend to have small amounts of morphological development, but are free to explore alternative control policies.

perform 1000 subsequent random controller mutations that build upon each other in series (a Brownian trajectory in the space
of controllers)—and repeat this process ten times for each run champion, each with a unique random seed. It was found that
optimized Evo-Devo robots tend to possess body plans that are much more robust to control mutations than those of Evo robots
(Fig. 4A). The first control mutation to optimized Evo robots tends to immediately render them immobile, whereas optimized
Evo-Devo robots tend to retain most of their functionality even after 1000 successive random changes to their controllers.
Within Evo-Devo designs, the functionality of the 25 fast designs are minimally affected by changes to their control, whereas
the five slow designs also tend to break after the first control mutation (Fig. 4B). Thus it can be concluded that these five robots
are non-modular: their non-canalized morphologies evolved a strong dependency on their controllers. The Evo robots are
similarly non-modular: they are brittle to control mutations.

To test the sensitivity of the evolved controllers to changes in their morphologies, we applied the same procedure described
in the previous paragraph but with random morphological mutations rather than control mutations. It was found that both
developmental and non-developmental systems tend to evolve controllers that are very sensitive to morphological mutations
(Fig. 4C). The first few morphological mutations to optimized robots, in both treatments, tend to immediately render them
immobile. Within Evo-Devo design types, neither of which canalized development in their controllers (Supplementary Fig.
S1), both the fast and slow designs possessed controllers sensitive to changes in their morphologies (Fig. 4D). Thus it can
be concluded that the non-canalized controllers evolved a strong dependency on their morphologies. The same is true of
the non-developmental systems (and is consistent with the findings of Cheney et al.21). Therefore, the only trait which was
successfully canalized was also the only trait which was robust to changes in other traits.

Heterochrony in morphological development.
The evolutionary algorithm can rapidly discover an actuation pattern that elicits a very small amount of forward movement in
these soft robots regardless of the morphology. There is then an incremental path of increasing locomotion speed that natural
selection can climb by gradually growing legs to reduce the surface area touching the floor and thus friction, and simultaneously
refining controller actuation patterns to better match and exploit the morphology (Fig. 5A,B).

There is, however, a vastly superior design partially hidden from natural selection—a ‘needle in the haystack’, to use Hinton
and Nowlan’s metaphor4. On flat terrain, rolling can be much faster and more efficient than walking, but finding such a design
is difficult because the fitness landscape is deceptive. Rolling over once is much less likely to occur in a random individual
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Figure 4. Sensitivity to morphological and control mutations. Ten random walks were taken from each run champion. (A)
Successive control mutations to the Evo and Evo-Devo run champions. (B) The previous Evo-Devo results separately for fast
and slow design types. (C) Successive morphological mutations to the Evo and Evo-Devo run champions. (D) The previous
Evo-Devo results separately for fast and slow design types. Medians plotted with 99% confidence intervals. The faster
Evo-Devo robots tend to possess body plans that are robust to control mutations.

Figure 5. Evolved behavior. (A) An evolved trotting soft quadruped with a two-beat gait synchronizing diagonal pairs of
legs (moving from left to right). (B) A galloping adult robot which goes fully airborne mid-gait. (C) A galloping juvenile robot
which develops into a rolling adult form. (D) A rolling juvenile robot at 10 points in ontogeny immediately after birth. Arrows
indicate the general directionality of movement, although this is much easier to observe in Supplementary Video S1. Voxel
color here indicates the amount of subsequent morphological development remaining at that cell: blue indicates shrinking
voxels (`k > `∗k), red indicates growing voxels (`k < `∗k), green indicates little to no change either way (`k ∼= `∗k).
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Figure 6. Late onset discoveries. Ontogenetic time before the discovery of rolling over, taken from the lineages of the best
robot from the each of the 25 Evo-Devo trials that produced a rolling design. Median time to discovery, with 95% C.I.s, for (A)
the lineage from the most distant ancestor (T = 0) to more recent descendants, and (B) the first ancestor to roll over compared
to the final run champion. Rolling over is measured from the first time step the top of the robot touches the ground, rather than
after completely rolling over. The first ancestors to roll over tend to do so at the end of their lives, their descendants tend to roll
sooner in life, and the final run champions all begin rolling immediately at birth. These results are a consequence of dependent
time steps: because mutational changes affect all downstream steps, their phenotypic impact is amplified in all but the terminal
stages of development. Thus, late onset changes can provide exploration in the search space without breaking rest-of-life
functionality, and subsequent evolution can gradually assimilate this trait to the start of development.

than shuffling forwards slightly. And as a population continues to refine walking morphologies and gaits, lineages containing
rocking individuals which are close to rolling over, or roll over just once, do not survive long enough to eventually produce a
true rolling descendant.

Development can alter the search space evolution operates in because individuals sweep over a continuum of phenotypes,
with different velocities, rather than single static phenotype that travels at a constant speed (Supplementary Fig. S2E,J). The
lineages which ultimately evolved the faster rolling design initially increased their morphological plasticity in phylogenetic
time as evidenced by the initial upward trends in the red curves in Supplementary Fig. S1 (exemplified in Fig. 3A) which
contain a statistically significant difference between their starting and maximum developmental window sizes (p < 0.001).
This exposes evolution to a wider range of body plans and thus increases the chance of randomly rolling at least once at some
point during the evaluation period.

The peak of morphological plasticity in Supplementary Fig. S1 (and Fig. 3A) generally lines up with the start of an
increasing trend in fitness (blue curves) and marks the onset of differential canalization. Rolling just once allows an individual
to move further (1 body length) than some early walking behaviors but they incur the fitness penalty of having fallen over and
thus not being able to subsequently walk for the rest of the trial. Therefore this tends to happen at the very end of ontogeny (Fig.
6), as individuals evolve to ‘dive’ in the last few time steps of the simulation of their behavior, thus incurring an additional
increase of fitness over their parent, which does not exhibit this behavior. Since more rolling incurs more fitness than less rolling,
a form of progenesis occurs as heterochronic mutations move `k closer to `∗k , for each voxel. This gradually earlifies rolling
from a late onset behavior to one that arises increasing earlier in ontogeny (Supplementary Video S1). As more individuals in
the population discover and earlify this rolling behavior, the competition stiffens until eventually individuals which are not born
rolling from the start are not fast enough to compete (Fig. 5C,D).

Generality of results.
For the results above, the mutation rate of each voxel was under evolutionary control (self-adaptation). In an effort to assess the
generality of our results, we replicated the experiment described above for various fixed mutation rates (Supplementary Fig.
S3). The fastest walking behaviors are produced with the lowest mutation rate we tested. The fastest rolling behaviors are also
produced by the lowest mutation rates, but higher mutation rates facilitate the discovery of this superior phenotype. Without
development, as in Hinton and Nowlan’s case4, the search space has a single spike of high fitness. One can not do better than
random search in such a space. At the highest mutation rate, optimizing Evo morphologies is random search, and this is the only
mutation rate where Evo does not require significantly more generations than Evo-Devo to find the faster design type. This can
be observed in Supplementary Fig. S3, for a given mutation rate, at the generations where the slopes of the fitness curves tend
to increase dramatically. However, the best two treatments, as measured by the highest median speed at the end of optimization,
have development, and they are significantly faster than random search (with and without development) (p < 0.01).
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Discussion
In these experiments, the intersection of two time scales—slow linear development and rapid oscillatory actuation, as from a
central pattern generator—generates positive and negative feedback in terms of instantaneous velocity: the robot speeds up and
slows down during various points in its lifetime (Supplementary Fig. S2J). Prior to canalization, unless all of the phenotypes
swept over by an individual in development keep the robot motionless, there will be intervals of relatively superior and inferior
performance. Evolution can thus improve overall fitness in a descendant by lengthening the time intervals containing superior
phenotypes and reducing the intervals of inferior phenotypes. However, this is only possible if such mutations exist.

We have found here that such mutations do exist in cases where evolutionary changes to one trait do not disrupt the
successful behavior contributed by other traits. For example, robots that exhibited the locally optimal trotting behavior (Fig.
5A) exhibited a tight coupling between morphology and control, and thus evolution was unable to canalize development in
either one, since mutations to one subsystem tended to disrupt the other. Brief ontogenetic periods of rolling behavior (Fig. 5C),
on the other hand, could be temporally extended by evolution through canalization of the morphology alone (Fig. 5D), since
these morphologies are generally robust to the pattern of actuation. The key observation here is that only phenotypic traits that
render the agent robust to changes in other traits become assimilated, a phenomenon we term differential canalization.

This insight was exposed by modeling the development of simulated robots as they interacted with a physically realistic
environment. Differential canalization may be possible in disembodied agents as well, if they conform to appropriate conditions
described in Supplementary Discussion.

This finding of differential canalization has important implications for the evolutionary design of artificial and embodied
agents such as robots. Computational and engineered systems generally maintain a fixed form as they behave and are evaluated.
However, these systems are also extremely brittle when confronted with slight changes in their internal structure, such as
damage, or in their external environment such as moving onto a new terrain22–24. Indeed, a perennial problem in robotics and
AI is finding general solutions which perform well in unseen environments24, 25. Our results demonstrate how incorporating
morphological development in the optimization of robots can reveal, through differential canalization, characters which are
robust to internal changes. Robots that are robust to internal changes in their controllers may also be robust to external changes
in their environment12. Thus, allowing robots to change their structure as they behave might facilitate evolutionary improvement
of their descendants, even if these robots will be deployed with static phenotypes or in relatively unchanging environments.

These results are particularly important for the nascent field of soft robotics in which engineers cannot as easily presuppose
a robot’s body plan and optimize controllers for it because designing such machines manually is unintuitive17, 26. Our
approach addresses this challenge, because differential canalization provides a mechanism whereby static yet robust soft robot
morphologies may be automatically discovered using evolutionary algorithms for a given task environment. Furthermore, future
soft robots could potentially alter their shape to best match the current task by selecting from previously trained and canalized
forms. This change might occur pneumatically, as in Shepherd et al.27, or it could modulate other material properties such as
stiffness (e.g. using a muscular hydrostat).

We have shown that for canalization to occur in our developmental model, some form of paedomorphosis must also occur.
However, there are at least two distinct methods in which such heterochrony can proceed: progenesis and neoteny. Progenesis
could occur through mutations which move initial parameter values (`, φ) toward their final values (`∗, φ ∗). Neoteny could
instead occur through mutations which move final values (`∗, φ ∗) toward their initial values (`, φ). Although a superior
phenotype can materialize anywhere along the ontogenetic timeline, late onset mutations are less likely to be deleterious
than early onset mutations. This is because our developmental model is linear in terms of process, and interfering with any
step affects all temporally-downstream steps. Since the probability of a mutation being beneficial is inversely proportional
to its phenotypic magnitude28, mutational changes in the terminal stages of development require the smallest change to the
developmental program. Hence, late-onset discoveries of superior traits are more likely to occur without breaking functionality
at other points in ontogeny, and these traits can become canalized by evolution through progenesis: mutations which reduce the
amount of ontogenetic time prior to realizing the superior trait (by moving `→ `∗ and/or φ → φ ∗). Indeed progenesis was
observed most often in our trials (Fig. 6): late onset mutations which transform a walking robot into a rolling one are discovered
by the evolutionary process, and are then moved back toward the birth of the robots’ descendants through subsequent mutations.

Finally, we would like to note the observed phenomenon of increased phenotypic plasticity prior to genetic assimilation.
Models of the Baldwin effect usually assume that phenotypic plasticity itself does not evolve, although it has been shown
how major changes in the environment can select for increased plasticity in a character that is initially canalized29. In our
experiments however, there is no environmental change. There is also a related concept known as ‘sensitive periods’ of
development in which an organism’s phenotype is more responsive to experience30. Despite great interest in sensitive periods,
the adaptive reasons why they have evolved are unclear31. In our model, increasing the amount of morphological development
increases the chance of capturing an advantageous static phenotype, which can then be canalized, once found. There is a
balance, however, as a phenotype will not realize the globally optimal solution by simply maximizing development. This would
merely produce a cube of maximum volume shrinking to a cube of minimum volume, or vice versa.
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The developmental model described herein is intentionally minimalistic in order to isolate the effect of morphological and
neurological change in the evolutionary search for embodied agents. The simplifying assumptions necessary to do so make it
difficult to assess the biological implications. For example, we model development as an open loop process and thus ignore
environmental queues and sensory feedback32, 33. We also disregard the costs and constraints of phenotypic plasticity34, 35.
However, by removing these confounding factors, these results may help generate novel hypotheses about morphological
development, heterochrony, modularity and evolvability in biological systems.

Methods

Resting length.
Voxelyze18 simulates soft materials as a lattice of spring-like beam elements and point masses. Voxels are centered on these
point masses and their individual properties depend on attributes of the beams connecting them to neighboring voxels. By
default, prior to environmental or behavioral forces, all (resting) beam lengths are equal, and thus voxels are rendered as cubes
of equal size (see for example Cheney et al.36). In these experiments, however, we alter the resting shape of the voxels by
changing the underlying beam lengths. For convenience we refer to voxels by their resting ‘length’, but the actual resting shape
of a single voxel depends on its neighbors.

Ballistic development.
Ballistic development β (t) = a+ t(b−a)/τ , is simply a linear function from a to b in ontogenetic time t ∈ (0,τ). For Evo
robots, a = b, and hence β (t) = a, which is just a constant value in ontogenetic time.

Current length.
For smaller voxels, it is necessary to implement damping into their actuation to avoid simulation instability. Actuation amplitude
is limited by a linear damping factor ξ (x) = min{1, (4x−1)/3}, which only affects voxels with resting length less than one
centimeter, and approaches zero (no actuation) as the resting length goes to its lower bound of 0.25 cm.

Actuation of the kth voxel ψk(t) therefore depends on the starting and final phase offsets (φk, φ ∗k ) for relative displacement,
and on the starting and final resting lengths (`k, `

∗
k) for amplitude. With maximum amplitude A = 0.14 cm and a fixed frequency

f = 4 Hz, we have

ψk(t) = A · sin
[

2π f t +φk +
t(φ ∗k −φk)

τ

]
·ξ
[
`k +

t(`∗k− `k)

τ

]
(1)

The current length of the kth voxel at time t, which we denote by Lk(t), is the resting length plus the offset and damped
signal ψk(t).

Lk(t) = `k +
t(`∗k− `k)

τ
+ψk(t) (2)

Current length is broken down into its constituent parts for a single voxel, under each treatment, in Supplementary Fig. S2.

Evolutionary algorithm.
We employ a standard evolutionary algorithm, Age-Fitness-Pareto Optimization37, which uses the concept of Pareto dominance
and an objective of age (in addition to fitness) intended to promote diversity among candidate designs. For 30 runs, a population
of 30 robots is evolved for 10000 generations. Every generation, the population is first doubled by creating modified copies of
each individual in the population. The age of each individual is then incremented by one. Next, an additional random individual
(with age zero) is injected into the population. Finally, selection reduces the population down to its original size according to
the two objectives of fitness (maximized) and age (minimized).

The mutation rate is also evolved for each voxel, by maintaining a separate vector of mutation rates which are slightly
modified every time a genotype is copied from parent to child. These 48 independent mutation rates are initialized such that
only a single voxel is mutated on average. Mutations follow a normal distribution (σ` = 0.75 cm, σφ = π/2) and are applied by
first selecting what parameter types to mutate (φk, φ ∗k , `k, `

∗
k), and then choosing, for each parameter separately, which voxels

to mutate. In Supplemental Materials we provide exact derivations of the expected genotypic impact of mutations in terms of
the proportions of voxels and parameters modified for a given fixed mutation rate λ . There is a negligible difference between
Evo and Evo-Devo in terms of the expected number of parent voxels modified during mutation (Supplementary Fig. S4).
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Developmental windows.
The amount of development in a particular voxel can range from zero (in the case that starting and final values are equal) to 1.5
cm for the morphology (which ranges from 0.25 cm to 1.75 cm) and π for the controller (which ranges from −π/2 to π/2).
The morphological development window, WL, is the sum of the absolute difference of starting and final resting lengths across
the robot’s 48 voxels, divided by the total amount of possible morphological development.

WL =
1

48(1.5)

48

∑
k=1
|`∗k− `k| (3)

The controller development window, WΦ, is the sum of the absolute difference of starting and final phase offsets across the
robot’s 48 voxels, divided by the total amount of possible controller development.

WΦ =
1

48π

48

∑
k=1
|φ ∗k −φk| (4)

Statistical analysis.
We use the Mann-Whitney U test to assess statistical significance.

Source code.
https://github.com/skriegman/how-devo-can-guide-evo contains the source code necessary for reproducing the results re-
ported in this paper.
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Supplementary Video

Supplementary Video S1.
https://youtu.be/nWbpegOCeQY provides a brief overview of the results reported in this paper (2:22 minutes).

Supplementary Video S2.
https://youtu.be/N8AThp4sZZ0 presents the paper in a nutshell (18 seconds): An unfit robot (1) evolves into a walker (2).
Its descendant ‘discovers’ rolling late in life (3). A mutation causes rolling to show up earlier in its descendant (4). The final
descendant rolls throughout its life (5).

Supplementary Discussion

Embodiment.
We consider an agent to be embodied if its output affects its input. This relationship between an agent and its environment may
be modeled as a partially observable Markov decision process (POMDP), where:

• S is a set of states,

• A is a set of actions, and

• T is a set of state transition probabilities.

At each time period, the environment is in some state s ∈ S. The agent takes an action a ∈ A, which causes the environment
to transition to state s′ with probability T (s′ | s,a). A control policy π specifies the action a = π(b) a robot will take next given
its current belief b about the new state of the environment. Usually, the goal is to find, given T , the optimal policy π∗ which
yields the highest overall performance.

The morphology of an agent can be considered as part of T since it mediates the transition between s and s′, yet it is not
part of π . By changing morphology we were able to modify a subset of T in such a way that facilitated the search for π∗. This
might also be possible in disembodied agents if other dimensions of T can be changed by some search process such as to
facilitate the search for π∗.

Supplementary Methods

Mutations.
Mutations are applied by first choosing what material properties (i.e. voxel-level parameters such as resting length and phase
offset) to mutate, and then choosing, separately for each property, which voxels to modify them in. For each of the n material
properties, we select it with independent probability p = 1/n. If none are selected, we randomly choose one. This occurs with
probability (1− p)n.

Hence the number of selected material properties for mutation is a random variable S which follows a binomial distribution
truncated on S≥ 1 such that the entire untruncated probability mass at S = 0 is placed on top of S = 1.

Pr(S = s | n) =


0 for s = 0

np(1− p)n−1 +(1− p)n for s = 1(
n
s

)
ps(1− p)n−s for s > 1

(5)

The expected number of selected material properties is then

E(S) = np(1− p)n−1 +(1− p)n +
n

∑
s=2

s
(

n
s

)
ps(1− p)n−s (6)

= (1− p)n +
n

∑
s=1

s
(

n
s

)
ps(1− p)n−s (7)

= (1− p)n +np (8)
= (1− p)n +1 (9)
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The selected material property of each voxel is mutated independently with probability λ , and thus the expected number of
genotype elements mutated given K total voxels is

δgene = λK ·E(S) (10)

Diving by the length of the genome, nK, the expected proportion of genotype elements mutated is

πgene = λ/n ·E(S) (11)

Note that bilaterally symmetrical properties have the same expected values since they are half the size but a mutation effects
two voxels.

We have K = 48 total voxels, and n = {2,4}material properties for our two main experimental treatments {Evo, Evo-Devo},
respectively:

n = 2 n = 4
δgene 60λ 63.8175λ

πgene 0.625λ 0.3291λ

The expected number of voxels mutated is lower than the average number of genotype elements mutated because there can be
overlap/redundancies among the voxels selected between the material properties. To calculate the average number of voxels
mutated we need to consider a hierarchy of binomial distributions.

The number of material properties mutated within the kth voxel given S selected, M|S, follows binom(S,λ ) ∀ k.

Pr(M = m | S,λ ) =
(

S
m

)
λ

m(1−λ )S−m (12)

For convenience, let’s denote the probability that at least one mutation occurs to the kth voxel as θ .

θ = Pr(M > 0 | S,λ ) = 1− (1−λ )S (13)

Then the number of voxels mutated, V , across a total of K voxels and S selected material properties, follows binom(K,θ).

Pr(V = v | S,K,λ ,n) =
(

K
v

)
θ

v(1−θ)K−v (14)

And the expected number of voxels mutated (out of K total) is

δvox = E(V | K,λ ,n) (15)
= ESEV (V | S,K,λ ,n) (16)
= ES(Kθ | S,K,λ ,n) (17)

= K
{

1−ES
[
(1−λ )S | λ ,n

]}
(18)

= K

{
1−

[
(1−λ )(1− p)n +

n

∑
s=1

(1−λ )s
(

n
s

)
ps(1− p)n−s

]}
(19)

= K
{

1− (1− p)n
[(

λ p−1
p−1

)n

−λ

]}
(20)

There is an extremely tight bound on the proportion of voxels mutated, πvox = δvox/K, for any n > 1 (Supplementary
Fig. S4). Thus, mutations in Evo (n = 2) and Evo-Devo (n = 4) have practically the same genotypic impact in terms of the
number of voxels modified. For completeness, the following table displays δvox for the specific values of λ considered by our
hyperparameter sweep (K = 48) (Supplementary Fig. S3).

λ

1/48 2/48 4/48 8/48 16/48 24/48 32/48 48/48

n
2 1.25 2.48 4.92 9.67 18.67 27 34.67 48
4 1.3 2.6 5.14 10.05 19.17 27.46 34.98 48

13/17



Figure S1. Evolutionary change during 30 Evo-Devo trials. The amount of morphological development, WL (see Equation
3), controller development, WΦ (see Equation 4), and fitness, F , for the lineages of the 30 Evo-Devo run champions.
Evolutionary time, T , moves from the oldest ancestor (left) to the run champion (right). A general trend emerges wherein
lineages initially increase their morphological development in T (rising red curves) and subsequently decrease morphological
development to almost zero (falling red curves). Five of the 30 evolutionary trials, annotated by ∗, fell into a local optima.
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Figure S2. Experimental treatments. The phase of an oscillating global temperature (A, F) is offset in the kth voxel by a
linear function from φk to φ ∗k (B, G). The resting length of the kth voxel is a linear function from `k to `∗k (C, H). For Evo, there
is no development, so φk = φ ∗k and `k = `∗k . The offset actuation is added on top of the resting length to give the current length
of the kth voxel (D, I). These example voxel-level changes occur across ontogenetic time (t), independently in each of the 48
voxels, and together interact with the environment to generate robot-level velocity (E, J). Velocities are averaged across
intervals of two actuation cycles.
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Figure S3. Mutation rate sweep. Median fitness (with 95% bootstrapped confidence intervals) under various mutation rates,
λ , a hyperparameter defined in Supplemental Materials which affects the probability a voxel is mutated. In the main
experiment of this paper, the mutation rate is evolved for each voxel independently, and is constantly changing. In this mutation
rate sweep, λ is held uniform across all voxels. The fastest walking and rolling behaviors are produced with the lowest
mutation rate we tested (λ = 1/48), although higher mutation rates facilitate the discovery of rolling which is much faster than
walking. Without development, the search space has a single spike of high fitness corresponding to this rolling behavior. One
can not do better than random search in such a space. When λ = 1, optimizing Evo morphologies is random search, and this is
the only mutation rate where Evo does not require significantly more generations than Evo-Devo to find the faster design type.
This can be observed for λ ∈ {1/6, 1/3, 1/2, 2/3, 1} at the generations where the slopes of the fitness curves tend to increase
dramatically. However, the best two treatments (Evo-Devo at λ = 1/2 and λ = 2/3), as measured by the highest median speed
at the end of optimization, have development, and they are significantly faster than random search (with and without
development) (p < 0.01).
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Figure S4. Mutational impact. The expected proportion of voxels modified, πvox, where n is the number of material
properties per voxel (voxel-level parameters such as `k and φk) and λ is the mutation rate (the probability of mutating a voxel
for a selected material property). A derivation is provided in Supplemental Materials. In this paper, we have treatments Evo,
with n = 2, and Evo-Devo, with n = 4. There is an extremely tight bound on the proportion of voxels mutated for any n > 1. At
λ = 1 every voxel must be mutated while at λ = 0 there can be no voxels mutated. The arch between these two points is
limited by the possibility of overlap (selecting the same voxel more than once).
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