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Abstract . The assumption that acquired character istics are not in­
herited is often taken to imply that the adaptations t hat an organism
learns dur ing its lifetime cannot guide the course of evolut ion . This
inference is incor rec t [2]. Learning alters the shape of the search space
in which evolu tio n operates and thereby provides good evolut ion ar y
paths towa rds sets of co-adapted alleles. We demonst rat e that th is
effect allows learning organisms to evolve much faster than their 000 ­

learning equivalents , even though the characteris tics acquired by the
phenotype are not communicated to the genotype.

1. Introduction

Many organ isms learn useful a daptations during t heir lifetime. T hese adap­
tations are often the resu lt of an exploratory search which tries out m any
possibiliti es in order t o d iscover good so lut ions. It seems very wastefu l not
to m ak e use of the exploration performed by t he phenotype to facilita t e
the evo lu t ionary search for go od genotypes. T he obvious way to achieve
this is to t ransfer inform ati on about the acqui re d characteristics back to
t he genotype. Most biologists now accept that the Lam arcki an hypothesis
is not substantiated; some then in fer that learn ing cannot guide t he evo­
lutionary search . We use a s imple combinatorial argument to show that
this inference is incorrect and t hat learn ing can be very effective in guid­
ing the search, even when t he specific adaptations t hat are learned are not
commun icated to the genotype. In d ifficu lt evolutionary searches which
re quire many possibilities to b e tested in order to di scover a complex co­
adaptation, we demon st rat e that each learning trial can b e almost as helpful
t o the evolutionary search as t he pro duct ion and evalu ation of a whole new
organism. T h is great ly increases t he efficiency of evolution because a learn­
in g trial is m uc h fas ter and requires much less expen d iture of energy t han
t he production of a whole organism.

Learning can provide an easy evo lu t ionary path towards co-adapted al­
leles in environments t hat hav~ no good evolutionary p ath for non-learning
organisms. T h is type of interact ion between learning and evo lu t ion was
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first proposed hy Baldwin 121 and Lloyd Morgan [61and is sometimes ca lled
the Baldwin effect. Wadd ington 191 proposed a similar type of interaction
bet ween developmental processes and evolut ion and called it "canalization"
or "genet ic assimilation" . So far as we can t ell, there have been no com­
puter simulat ions or analyses of the combinatorics that demonstrate the
magnitude of the effect.

2 . An ex t r em e and simple exa m p le

Baldwinism is best understood by considering an extreme (and unrea listic )
case in which t he combinatorics are very clear. Imagine an organ ism that
contains a neural net in which there are many pot enti al connecti ons. Sup­
pose that the ne t only con fers added reproductive fitn ess on the organism
if it is connec ted in exact ly the right way. In this wors t case, there is no
reasonable evolut ionary path towards the goo d net and a pure evolution­
ary search can on ly discover which of the potential connections should be
present by trying possibilities at ran dom. T he good net is like a needle in
a haystack.

The evolutionary search space becomes much better if the geno type
sp ecifies some of the decisions about where to put connections, but leaves
other decisions to learning. This has the effect of constructing a large
zone of increased fitness around the good net. Whenever the genetically
specified decisions are correct, the genotype fa lls wit hin this zone and will
have increased fitness because learning will stand a chance of discovering
how to make the remaining decisions so as to produce the good net. This
makes the evolut ionary search much easier. It is like searching for aneedle
in a haystack when someone te lls you when you are getting close. T he
central point of the argu ment is that the person who tells you that you are
get t ing close does not need to tell you anything more.

3 . A sim u lat ion

We have simulated a simple example of th is kind of interacti on between
learning and evolut ion . The neural net has 20 potential connections , and
the genotype has 20 genes", each of which has three alte rnative forms (a l­
leles) called 1, 0, and ? The 1 allele specifies that a connection should he
present, a specifies that it should be absent, and ? specifies a connection
containing a switch which can be open or closed. It is left to learning to
decide how the switches sho uld be set. We assume, for simplicity, a learning
mechanism that simply tries a ran dom combination of switch settings on
every trial. IT the combination of the switch settings and the genetically
specified dec isions ever produce the one good net we assume that the switch

1 We assume , for simplicity, that each po tent ial connection is controlled by its own
gene. Naturally, we do not be lieve that th e relati onshi p between genes and connections is
80 direct.
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settings are frozen. Otherwise they keep changing.?
The evolutionary search is modeled with a version of the genetic al­

gorithm proposed by Holland 15J. Figure 1 shows how learning alters the
shape of the search space in which evolution operates. Figure 2 shows what
happens to the relative frequencies of the correct, incorrect, and ? alleles
during a typical evolutionary search in which each organism runs many
learning trials during its lifetime. Notice that the total number of organ­
isms produced is far less than the 2'° that would be expected to find the
good net by a pure evolutionary search. One interesting feature of figure 2
is that there is very little selective pressure in favor of genetically sp ecifying
the last few potential connections, because a few learning trials is almost
always sufficient to learn the correct settings of just a few switches.

The same problem was never solved by an evolutionary search without
learning. This was not a surprising result; the problem was selected to be
extremely difficult for an evolutionary search, which relies on the exploita­
tion of small co-adapted sets of alleles to prov ide a better than random
search of the space. The spike of fitness in our example (figure 1) means
that the only co-adaptation that confers improved fitn ess requires simulta­
neous co-adaptation of all 20 genes. Even if this co-adaptation is discovered,
it is not easily passed to descendants. If an adapted individual mates with
any individual other than one nearly identical to itself, the co-adaptation
will probably be destroyed. The crux of the problem is that only the one
good genotype is distinguished, and fitness is the only criterion for mate
select ion. To preserve t he co-adaptat ion from generat ion to generation it
is necessary for each good genotype, on average, to give rise to at least
one good descend ant in the next generation. If the dispersal of complex
co-adaptations due to mating causes each good genotype to have less t han
one expected good descendant in the next generation, t he co-adaptation
will not spread, even if it is d iscovered many t imes. In our example, the ex­
pected number of good immediate descend ants of a good genotype is below
1 wit hout learning and above 1 with learning.

4 . Discussion

The most common argument in favor of learning is that some aspects of
the env ironment are unpredictable, so it is pos it ively advantageous to leave
some decis ions to learning rather than specifying them genetically (e.g.
Harley 141) . This argument is clearly correct and is one good reason for
having a learning mechanism, but it is different from the Baldwin effect
which applies to complex co-adaptations to predictable aspects of the en­
vironment .

2This implicitly assumes that t he organism can "recognise" when it bas achieved t he
good net. This recognition ability (or an ability to tell when the switch sett ings have been
improved) is required to make learning effective and so it must precede the Baldwin effect.
Thus, it is possible that some properties of an organism which are curre ntly genetically
specified were once behavioral goals of the organism's ancest ors .
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zone of increased fitness

combinations of alleles

Figure 1: The evolution of the relative frequencies of the three possible
types of allele. There are 1000 organisms in each generation. and
each organism performs 1000 learning trials during its lifetime. The
initial 1000 genotypes are generated by selecting each allele at random
with a probability of 0.5 for the? allele and 0.25 for each of the
remaining two alleles. A typical genotype, therefore, has about ten
decisions genetically specified and about ten left to learning. Since we
run about 210 learning trials for each organism, there is a reasonable
chance that an organism which has the correct genetic specification
of ten potential connections will learn the correct specification of the
remaining ten. To generate the next generation from the current one,
we perform 1000 matings. The two parents of a mating are different
individuals which are chosen at random from the current generation.
AJJ.y organism in the current generation that learned the good net
has a much higher probability of being selected as a parent. The
probability is proportional to 1+ 19n/10oo, where n is the number of
learning trials that remain after the organism has learned the correct
net. So organisms which learn immediately are 20 times as likely to
be chosen as parents than organisms which never learn. The single
offspring of each mating is generated by randomly choosing a cross­
over point and copying all alleles from the first parent up to the cross­
over point, and from the second parent beyond the cross-over point.
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Figure 2: The shape of t he search space in which evolution operates.
The horizontal axis represents combinations of alleles and so it is
not really one-dimensional . Wit hout learn ing, t he search space has a
single spike of high fitness. One can not do bett er t han random search
in such a space. With learnin g, there is a zone of increased fitness
around the spike. This zone corresponds to genotypes which allow
the correct combination of potential connections to be learned.
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To keep the argument simple, we started by assuming that learning was
simply a random search through possible switch settings. When there is
a single good combination an d all other combinations are equally bad a
random search is a reasonable strategy, but for most learning tasks there is
more structure than this and the learning process shou ld make use of the
structure to home in on good sw itc h configurations. More sophist icated
learning procedures could be used in these cases (e.g Rumelhart, Hinton,
and Williams [7]). Indeed, using a hillclimbing procedure as an inner loop
to guide a genetic search can be very effective 13). As Holland 151has shown,
genetic search is particularly good at obtaining evidence about what con­
fers fitness from widely separated points in the search space. Hiliclimbing,
on the other hand, is good at loca l, myopic optimization. When the two
techniques are combined, they often perform much better than eit her tech­
nique alone [1]. Thus, using a more sophisticated learning procedure on ly
strengthens the argument for the importance of the Baldwin effect.

For simplicity, we assumed that the learning operates on exactly t he
same variables as the genetic search. T his is not necessary for the arg ument.
Each gene could influence the probabili ties of large numbers of po tent ial
connections and the learning would still improve the evolutionary path for
the genetic search. In this more general case, any Lamarckian attempt
to inherit acquired characteristics would run into a severe computational
d ifficulty: To know how to change the genotype in order to generate the
acquired characteristics of the ph enotype it is necessary to invert the for­
ward function that maps from genotypes, via the processes of deve lopment
and learning, to adapted phenoty pes . T his is generally a very complicated,
non-linear, stochastic function and so it is very har d to compute how to
change t he genes to achieve des ired changes in the phenotypes even when
these desired changes are known.

We have focused on the interaction .between evolut ion and lea rning, but
the same combinatorial arg ume nt can be applied to the interaction betwee n
evolution and deve lopment. Instead of directly specifying the phenotype,
the genes could specify the ingred ients of an adaptive process and leave it
to this process to achieve the required end result . An interesting model of
this kin d of adaptive process is described by Von der Malsburg and Will­
shaw [8J. Wad dington [9J suggested this ty pe of mechanism to account for
the inheritance of acquired character ist ics with in a Darwinian framework.
There is selective pressure for genes which facilitate the deve lopment of
certain useful characteristics in response to the environment. In the limi t ,
the deve lopmental process becomes canalized: The same characteristic will
tend to develop regardless of the environmental factors that originally con­
trolled it. Environmental control of the process is supplanted by internal
genetic contro l. Thus, we have a mechanism which as evolution progresses
allows some aspects of the phenotype that were initially specified indirect ly
via an adapt ive process to become more directly specified.

Our simulation supports the arguments of Baldwin and Waddington,
and demonstrates that adaptive processes within the organism can be very
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effect ive in guiding evolution. The main limitation of the Baldwin effect is
that it is only effective in spaces that would be hard to search without an
adapt ive process to restructure the space. The example we used in which
there is a sing le spike of added fitness is clearly an extreme case, and it
is d ifficult to assess the shape that real evolutionary search spaces would
have if there were no adaptive processes to restructure them. It may be
poss ible to throw some light on this issue by using computer simulations
to exp lore the shape of the evolutionary search space for simple neural
networks that do not learn, but such simu lations always contain so many
simplifying assumptions that it is hard to assess their biological relevance .
We t herefore conclude with a disjunction: For bio logists who believe that
evolutionary search spaces contain nice hills (even without the restructuring
caused by adaptive processes) the Baldwin effect is of little int erest , 3 but for
biologists who are suspicious of the assertion that the natural search spaces
are so nicely structured, the Baldwin effect is an important mechanism th at
allows adaptive processes within the organism to greatly improve the space
in which it evolves.
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