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Abstract
In this paper, we extend previous work on the evolution
of continuous-time recurrent neural networks for mini-
mally cognitive behavior (the simplest behavior that
raises issues of genuine cognitive interest). Previously,
we evolved dynamical “nervous systems” for orienta-
tion, reaching, and discrimination.  Here we evolve
agents that can judge the passability of openings rela-
tive to their own body size, discriminate between
visible parts of themselves and other objects in their
environment, predict and remember the future location
of objects in order to catch them blind, and switch their
attention between multiple distal objects.

1 . Introduction
Notions of situatedness, embodiment and dynamics are play-
ing an increasingly influential role in both the foundations
and the practice of cognitive science (Clark, 1997; Beer,
2000). This offers an excellent opportunity for work in adap-
tive behavior to contribute to cognitive science, and many
such efforts are underway (Brooks & Stein, 1994; Almássy
et al., 1998; Pfeiffer & Scheier, 1999). Evolutionary ap-
proaches are particularly fruitful because they allow an
exploration of possible cognitive architectures relatively
unencumbered by a priori assumptions. Such approaches are
being successfully applied to increasingly more sophisticated
behavior (Harvey et al., 1994; Cliff & Miller, 1996; Naka-
hara & Doya, 1997; Parisi, 1997; Di Paolo, 1997).

In our own work, we use genetic algorithms to evolve
dynamical “nervous systems” for model agents and then ana-
lyze the dynamics of the resulting systems (Beer, 1997). We
believe that such simpler idealized models can serve as “fric-
tionless planes” in which basic theoretical principles of the
dynamics of agent-environment systems can be worked out.
Because we are ultimately interested in cognitive questions,
we have begun to focus this work on minimally cognitive
behavior, the simplest possible agent-environment systems
that raise issues of genuine cognitive interest (Beer, 1996).
If we hope to evolve and ultimately analyze in detail model
agents exhibiting genuinely cognitive behavior, it is essen-
tial to focus on the simplest possible agent-environment
systems that exhibit the cognitive behavior of interest.  It is
also important that the cognitive issues arise in a natural
way in the context of the agent’s behavior, rather than being

posed abstractly. In previous work, we introduced a simple
visually-guided agent that could potentially be used to ad-
dress a wide range of basic cognitive phenomena and
demonstrated the evolution of dynamical “nervous systems”
for orientation and reaching to objects and discrimination
between objects (Beer, 1996).

In this paper, we extend this work to a wider range of
more complicated tasks.  First, we explore agents that must
visually decide which openings their bodies can and cannot
fit through. Second, we evolve agents that must distinguish
between visible parts of themselves and objects in their en-
vironment. Third, we examine a task that requires an agent
to predict and remember the future location of a target object
in order to catch it blind.  Finally, we explore a task in
which an agent must switch its attention between multiple
distal objects.

2 . Methods
In all of the experiments described in this paper, an array of
proximity sensors allowed an agent to perceive distal objects
that fall toward it from above. If an object intersected a prox-
imity sensor, the output of that sensor was inversely
proportional to the separation between the object and the
agent, with values ranging from 0 (no intersection) to 10
(no separation). The agent moved according to first-order
dynamics, with motor neurons directly specifying the veloc-
ity of movement.

The agent’s behavior was controlled by a continuous-time
recurrent neural network (CTRNN) with the following state
equation:
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where y  is the state of each neuron, τ  is its time constant,
wji  is the strength of the connection from the j th to the i th

neuron, g  is a gain, θ  is a bias term, σ ( ) /( )x e x= + −1 1
is the standard logistic activation function, and I  represents
an external input (e.g., from a sensor).  States were initial-
ized to 0 and circuits were integrated using the forward Euler
method with an integration step size of 0.1.

A real-valued genetic algorithm (Mitchell, 1996) was used
to evolve CTRNN parameters. A population of individuals
was maintained, with each individual encoded as a length M
vector of real numbers.  Initially, a random population of



vectors was generated by initializing each component of
every individual to random values uniformly distributed over
the range ±1 (they could move outside this range during
evolution).  Individuals were selected for reproduction using
a linear rank-based method.  A specified elitist fraction of
top individuals in the old population were simply copied to
the new one.  The remaining children were generated by ei-
ther mutation or crossover with an adjustable crossover
probability. A selected parent was mutated by adding to it a
random displacement vector whose direction was uniformly
distributed on the M-dimensional hypersphere and whose
magnitude was a Gaussian random variable with 0 mean and
variance σ2. The expression derived in the Appendix was
used as a guideline for setting the mutation variance. A neu-
ron’s time constant, bias, gain and input weights were
treated as a module during crossover.

Unless otherwise indicated, search parameters in the range
±1 were mapped linearly into CTRNN parameters with the
following ranges: connection weights ∈  [-5,5], biases ∈  [-
10,0], gains ∈  [1,5], and time constants ∈  [1,2]. All prox-
imity sensors shared the same time constant. All CTRNNs
were bilaterally symmetric. While this often made trials
involving nearly-centered objects difficult, it reflects the
symmetry of the agent and the tasks, and it halves the num-
ber of parameters that must be evolved.

3 . Perceiving Affordances
Any situated, embodied agent must be sensitive to the rela-
tionship of its own body to its surroundings and it must be
able to perceive the actions that this environment affords in
somatic terms (Gibson, 1979).  For example, in order for an
agent to perceive whether or not an aperture is passable, it
must judge the aperture’s width relative to its own body
(Warren & Wang, 1987). In our first set of experiments, we
evolved agents that could accurately distinguish between
passageways and obstacles in a falling wall, passing through
openings wide enough to accommodate their bodies while
avoiding openings that were too narrow.

Square agents of size 20 had 7 proximity sensors of
maximum length 160 uniformly distributed over a visual
angle of π/4 (Figure 1).  Their horizontal velocity was pro-
portional to the sum of opposing forces produced by a
bilateral pair of effectors (with a constant of proportionality
of 8). Walls consisting of two squares of width 20 separated
by an aperture whose width was in the range [16,24] dropped
from above with a vertical velocity of 4 and a horizontal
offset of ±50 relative to the agent.

The circuit architecture was bilaterally symmetric, with 7
sensory neurons projecting to 6 fully interconnected in-
terneurons that in turn projected to two motor neurons
controlling horizontal motion (for a total of 71 parameters).
Populations of 100 individuals were evolved for 2000 gen-
erations with a mutation variance σ2 of 0.3, a crossover
probability of 0.5 and an elitist fraction of 5%.

The performance measure to be maximized was:
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for an aperture wide enough for the agent to pass through,
and di is the final horizontal separation between the center of
the agent and the center of the aperture at the end of the i th

trial. This fitness measure assigns near-zero fitness to incor-
rect actions and linearly penalizes near-misses.  Since
making the correct decision without hitting the wall results
in a significantly higher score, this performance measure

Figure 1: Experimental setup for the passability experiments.
The agent moves horizontally while a wall with an adjustable
aperture falls from above.  The rays of the agent’s proximity
sensors are shown in gray.
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Figure 2:  Categorization of apertures into passable and im-
passable by the best passability agent. The final horizontal
separation between the agent and the center of the aperture
(mean ± s.d., N = 101 trials) is plotted against the aperture width
relative to the agent’s size.



also rewards accuracy. The search began with 4 easy and 2
difficult test cases. Every time that the best agent’s average
fitness exceeded 90%, two additional trials were added until a
total of 30 trials was reached.

Out of a total of 30 runs, 6 produced agents that achieved
an average performance greater than 90% on all 30 trials.
The best agent had a mean fitness of 99.2% on the 30
evaluation trials and 96% on 1000 random trials. By plot-
ting the mean final horizontal separation between the agent
and the center of the aperture as a function of aperture width
(Figure 2), we see that the agent makes a very sharp cate-
gorical distinction between passable and impassable
apertures at its own body width (dashed gray line). Since the
evaluation trials are characterized by only 2 parameters (ini-
tial horizontal offset and aperture width), we can directly
visualize the agent’s generalization performance as a 2-
dimensional density plot (Figure 3). Note that this agent can
accurately discriminate aperture size differences smaller than
0.5 (2.5% of its body size), which is quite good given the
small number of proximity sensors that it possesses. The
gray areas in this plot indicate trial parameter regimes where
the agent brushes the wall when passing through an aper-
ture. Not surprisingly, the majority of these gray regions
fall between the 30 evaluation trials used during evolution.
Interestingly, this agent prefers to err on the side of avoiding
apertures that are just barely large enough to fit through
rather than trying to fit through apertures that are too small.

The behavior of the best agent is shown in Figure 4 for
aperture widths just below (left) and just above (right) the
agent’s width. Note that the two plots exhibit a great deal of
qualitative similarity. In both cases, the trajectories of mo-
tion are grouped into two distinct bundles depending on the
initial horizontal offset of the wall. The distinguishing fea-
ture seems to be whether or not the wall intersects the
outermost ray shortly after a trial begins.  More central trials

result in scans that repeatedly cross the midline, while the
more peripheral trials result in a slower centering movement
that crosses the midline only once. The two plots qualita-
tively differ only in the final orientation movement, with
the agent eventually moving to avoid an impassable aperture
(left), but centering a passable aperture (right).

The strategies of the other top agents varied widely. Some
agents distinguished between central and peripheral trials,
while others did not. Some agents initially foveated the aper-
ture, while others initially foveated one side of the wall
instead. Some scanned the wall multiple times before decid-
ing, while others scanned only once.  However, all of the
top agents were quite decisive.  If they received a less than
perfect score, it was generally because they made the wrong
decision or they were slightly sloppy in centering a barely
passable opening, not because they equivocated between
centering and avoidance and ended up colliding with the mid-
dle of one of the wall blocks.

4 . Self/NonSelf Discrimination
Any agent possessing a spatially extended body has the po-
tential to perceive this body with its own distal sensors.
This possibility raises the problem of distinguishing self
from nonself depending on which of the objects in an
agent’s field of view are under its direct control (Neisser,
1993).  In a second set of experiments, we evolved agents
that could catch moving objects with an opaque hand.  These
experiments extend previous work on evolving agents that
could point to stationary objects with a transparent manipu-
lator (Beer, 1996).

Agents of size 20 had 7 proximity sensors of maximum
length 160 uniformly distributed over a visual angle of π/4
(Figure 5). They were unable to move, but had an opaque
hand of size 5 centered on the end of a transparent arm of
length 25 with one angular degree of freedom having an an-
gular range of ±π/2. The angular velocity of the arm was
proportional to the sum of two opposing torques produced
by a bilateral pair of effectors (with a constant of propor-
tionality of 0.15). Circular objects of diameter 20 dropped
from above with a vertical velocity of 4 and an initial hori-
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Figure 3: Generalization performance of the best passability
agent. The performance as a function of initial horizontal posi-
tion and aperture width relative to the agent is shown as a
density plot. The highest performance is shaded white and the
lowest performance is shaded black.
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Figure 4:  Behavior of the best passability agent. The wall’s
horizontal and vertical position over time relative to the agent
is plotted for an aperture 1 unit smaller than the agent (left) and
1 unit larger than the agent (right). Trials begin at top and time
increases from top to bottom.



zontal offset in the range ±24 relative to the agent. Given
the initial horizontal offset, an object’s horizontal velocity
was drawn from a range than guaranteed its path would inter-
sect the arc of the hand.

The circuit architecture was bilaterally symmetric, with
the same architecture as in the previous experiments with
the addition of a bilateral pair of arm angle sensors (for a
total of 74 parameters).  Each sensor was sensitive to arm
displacement in one direction only, with an output of 0.1
when the arm was centered and an output of 0.9 at the edges
of vision (±π/8).  Populations of 100 individuals were
evolved for 1000 generations using a mutation variance σ2

of 0.1, a crossover probability of 0.5 and an elitist fraction
of 5%.

The performance measure to be maximized was:
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and θi is the angular error at the end of the i th trial. The
search began with 5 initial trials. Every time that the best
agent’s average fitness exceeded 90%, 5 additional trials were
added until a total of 30 trials was reached.

Out of a total of 16 runs, 7 produced agents that achieved
an average performance greater than 90% on all 30 trials.
The best agent had a mean fitness of 97.6% on the 30
evaluation trials and 95% on 1000 random trials. As shown
in Figure 6, its accuracy is very good.

The behavior of the best agent catching objects at the
midline is shown in Figure 7. This agent oscillates its hand
back and forth at one of 4 different locations before moving
to the midline as the object nears. Note that the hand can
slip from one location to another. Interestingly, the hand
generally oscillates on the same side of the agent as the ob-
ject appears initially, repeatedly occluding the falling object.

Also, note that there seems to be a small but systematic
error in the final hand position.  The hand tends to end a bit
too far to the left for objects that originate from the left and
vice versa. In addition, although not shown in this figure, it
turns out that the most difficult objects for this agent to
catch are those that completely cross its field of view (i.e.,
they originate at the extreme left but intersect the arc of the
hand at the extreme right, or vice versa). The arm angle sen-
sors play a crucial role in this agent’s behavior. If these
sensors are lesioned, the arm initially follows the same tra-
jectories shown in Figure 7, but then swings out of the field
of view and never returns.  In contrast, making the hand
transparent has only a small effect on the agent’s behavior
(the two arm angle trajectory bundles on each side of the

Figure 5: Experimental setup for self/nonself discrimination
experiments.  The agent is stationary, but can swing an arm
with an opaque hand along an arc while objects fall from above.
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Figure 7: Arm angle trajectories over time of the best
self/nonself discrimination agent catching objects at the mid-
line from initial hand positions at either the left or right edge of
the visual field. The trajectories are shaded according to the ini-
tial angular position of the object as indicated at the top of the
plot.
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Figure 6: Mean catching accuracy of the best self/nonself
discrimination agent. The final angular position of the hand is
plotted against the final angular position of the object (mean ±
s.d., N = 150 trials). Note that the average behavior closely
approximates the ideal (dashed gray line).



agent merge into one halfway between them) and the per-
formance is almost identical. This suggests that the agent
uses its arm angle sensors to discount the presence of its
own hand in its field of view. Although the detailed arm
trajectories of the other top agents varied a great deal, they
all moved the hand back and forth within the field of view,
and they all exhibited a similar pattern of sensitivity to arm
angle sensor lesions and insensitivity to hand transparency.

5 . Short-Term Memory
A minimally cognitive agent must be able to transcend its
immediate environment by allowing past experiences to
influence its future actions. Indeed, it has been argued that
only agents that can coordinate their behavior with environ-
mental features that are not immediately present are
sufficiently “representation hungry” to be of cognitive inter-
est (Clark, 1997). In previous work, we evolved agents that
could catch objects falling vertically after only briefly ob-
serving their position and then moving to the correct
location while blind to the object’s subsequent motion (Gal-
lagher & Beer, 1999).  Here we probe the strategies that
evolve for objects falling vertically, and extend this work to
objects exhibiting horizontal motion as well.

In our first set of short-term memory experiments, agents
of diameter 30 had 9 proximity sensors of maximum length
205 uniformly distributed over a visual angle of π/6 (Figure
8). Their horizontal velocity was proportional to the sum of
opposing forces produced by a bilateral pair of effectors
(with a constant of proportionality of 5). Circular objects of
diameter 26 dropped from above with a vertical velocity of 2
and an initial horizontal offset of ±50. As soon as an agent
began to move, the input to all proximity sensors was per-
manently set to 0, so that the agent’s subsequent behavior
could only depend on observations of the object collected
before movement began.

The CTRNN architecture was bilaterally symmetric, with
9 sensory neurons, 4 fully interconnected interneurons and 2
fully interconnected motor neurons (for a total of 56 parame-

ters). The sensory neurons projected to both the interneurons
and the motor neurons and the interneurons and motor neu-
rons were fully interconnected. All proximity sensors shared
a single gain and bias, interneuron and motor neuron biases
were in the range [-5,5], and motor neurons had gains fixed
to 1. Gains were clipped to be greater than 0 and time con-
stants were clipped to be greater than 1. Populations of 100
individuals were evolved for 500 generations with a muta-
tion variance σ2 of 0.4, a crossover probability of 0 and an
elitist fraction of 2%.

The performance measure to be maximized was:
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where di is the final horizontal separation between the center
of the agent and the center of the object at the end of the i th

trial. Twelve evaluation trials were used, evenly spaced over
the range [0,55].

Out of a total of 5 runs, all produced agents that achieved
an average performance greater than 97% on all 12 trials.
The best agent had a mean fitness of 99% on the 12 evalua-
tion trials and 99.3% on 1000 random trials. The accuracy of
this agent in catching objects as a function of their horizon-
tal position is shown in Figure 9. Despite its blindness, the
agent’s accuracy is nearly perfect except for small errors
around the midline and at the periphery of the visual field.

The behavior of this agent is shown in Figure 10. This
agent waits in place until the object intersects one of its
outermost rays. After a short delay, the agent begins to
move in the direction of the intersection with an average
velocity designed to bring it to the object’s horizontal posi-
tion at the time the object reaches the agent. The agent’s
motor response has two components: an initial transient

Figure 8:  Experimental setup for short-term memory experi-
ments. The agent can move horizontally while objects fall
either vertically or diagonally from above. The rays are dashed
because, as soon as the agent begins to move, it goes blind.
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Figure 9: Accuracy of the best short-term memory agent for
vertically falling objects. The final horizontal position of the
agent is plotted against the final horizontal position of the
object. Note that the average performance closely approximates
the ideal (dashed gray line) except at the midline and periphery.



phase and a final constant phase. The steady-state horizontal
velocity achieved in the constant phase was 0.53, which is
very close to the required horizontal velocity predicted by the
vertical velocity of the object and the angle of the outermost
ray:  2/(tan 5π/12) = 0.54. The transient phase appears to be
designed to correct for the fact that a falling circle will inter-
sect the outermost ray not at the circle’s leading edge, but to
one side. Thus, the object’s actual horizontal position is
somewhat more central than the point of intersection with
the ray would indicate. Since the agent can no longer see the
object once it begins to move, both the transient and steady-
state velocity produced by the agent is an internally-

generated, temporally-extended response to the initial pertur-
bation of the object intersecting an outermost ray.

From Figures 9 and 10, it is clear that this strategy begins
to break down near the midline and near the periphery.  An
object falling near the midline will not intersect the outer-
most ray until it has nearly reached the agent, allowing
insufficient time for the agent to respond.  Fortunately, ob-
jects falling near the midline require little movement to
catch. A sufficiently peripheral object will immediately in-
tersect the outermost ray, forcing the agent to treat all such
cases identically.  Three of the top five agents use a similar
strategy, whereas the other two use different strategies.

In our second set of short-term memory experiments, we
evolved agents that could catch diagonally-moving objects
despite going blind during movement. Note that the strategy
described above for vertical objects will not work here be-
cause objects with different horizontal velocities can
intersect a peripheral ray at the same time and vertical dis-
tance. The experimental setup for our second set of
experiments was identical to that for the first except for the
following differences. Objects now fell diagonally with a
horizontal velocity in the range ±1.  The CTRNN architec-
ture now has 6 interneurons (for a total of 82 parameters).
Experiments were now run for 5000 generations with a mu-
tation variance σ2 of 0.5. The performance measure was the
same as for vertical objects, except that a 20 point penalty
was assessed if the agent began moving within the first 5
time steps of the trial. Twenty-eight evaluation trials were
used, with the initial horizontal position in the range [0,50]
and the horizontal velocity in the range ±1.

Out of a total of 5 runs, 4 produced agents that achieved
an average performance greater than 94% on all 28 trials.
The best agent had a mean fitness of 96.2% on the 28
evaluation trials and 95.7% on 1000 random trials.  The
accuracy of this agent is shown in Figure 11.  Despite the
horizontal motion of the objects and despite the fact that the
agent goes blind when it moves, this agent is quite accurate
except for small errors at the midline and periphery. Its be-
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Figure 10:  Behavior of the best short-term memory agent for
vertically falling objects. Trajectories of motion relative to the
agent of objects falling vertically from several different initial
horizontal offsets are shown. Gray trajectories are those for
which the agent’s strategy begins to break down.
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Figure 12: Behavior of the best short-term memory agent for
diagonally falling objects. (Left) Trajectories of motion relative
to the agent of objects falling diagonally with a horizontal ve-
locity of 0.5 from several different initial horizontal positions
are shown.  (Right) Trajectories of motion relative to the agent
of objects falling diagonally from the midline with several dif-
ferent horizontal velocities are shown.
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Figure 11: Mean accuracy of the best short-term memory
agent for diagonally falling objects. The final horizontal posi-
tion of the agent  is plotted against the final horizontal
position of the object (mean ±  s.d., N = 200 trials). Note that
the average performance closely approximates the ideal (dashed
gray line).



havior is shown in Figure 12.  It begins to move about the
time that the object loses contact with the outermost ray,
with an oscillating velocity that slowly decays to a constant
value. Generally speaking, the initial peak of the oscillation
varies systematically with the object’s horizontal velocity,
with larger object velocities producing larger peak agent
velocities. This would cause the agent to move a greater
horizontal distance for objects with larger horizontal veloci-
ties. Thus, it appears that the diagonal short-term memory
agents use a variation of the strategy employed by the verti-
cal short-term memory agents, but with a more complex
transient structure to account for the horizontal velocities of
the objects. All of the top agents used a similar strategy.

6 . Selective Attention
A complex environment often contains many more objects
than an agent can simultaneously interact with. This requires
a minimally cognitive agent to be able to focus its attention
on one object while ignoring others. Indeed, attentional
mechanisms are fundamental components of many other
cognitive systems (Posner, 1995). In a final set of experi-
ments, we evolved agents that could catch two objects
moving at different horizontal and vertical velocities.

Agents of diameter 30 had 9 proximity sensors of maxi-
mum length 205 uniformly distributed over a visual angle of
π/6 (Figure 13).  Their horizontal velocity was proportional
to the sum of opposing forces produced by a bilateral pair of
effectors (with a constant of proportionality of 5). Two cir-
cular objects of diameter 26 dropped from above. One of the
objects had a vertical velocity in the range [3,4] and the
other had a vertical velocity in the range [1,2]. The horizon-
tal velocities of the objects were in the range ±2. The
velocities and initial positions of the two objects were con-
strained such that |x1 - x2| / |t1 - t2| ≤ 5α , where x and t
represent the final horizontal positions and times of impact
of the two objects, 5 is the maximum horizontal velocity of
the agent and α  = 0.7 was chosen to ensure that the agent

had a reasonable chance of reaching the second object after
catching the first one.

The CTRNN architecture was bilaterally symmetric, with
9 sensory neurons, 10 fully interconnected interneurons, and
2 fully interconnected motor neurons (for a total of 146 pa-
rameters). The sensory neurons projected to both the
interneurons and the motor neurons and the interneurons and
motor neurons were fully interconnected. All proximity sen-
sors shared a single gain and bias, interneuron and motor
neuron biases were in the range [-5,5], and motor neurons
had gains fixed to 1. Gains were clipped to be greater than 0
and time constants were clipped to be greater than 1. Popula-
tions of 100 individuals were evolved for 9000 generations,
with a mutation variance σ2 of 1, a crossover probability of
0 and an elitist fraction of 2%.

The performance measure to be maximized was:
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where pi = |di,1| + |di,2| and di,1 and di,2 are the final horizontal
separations between the center of the agent and the center of
the first and second objects on the i th trial.

The total number of trials grew from 1 to 35 in the course
of an evolution.  A new trial was added every time the best
performance exceeded a threshold T or 600 generations
passed without the addition of a new trial.  Here T = 198 –
n/14 – gen/2500, where n is the current number of evalua-
tion trials and gen is the current generation number. These
trials were chosen to include as many difficult cases as pos-
sible.  Once the number of trials reached 35, new trials were
generated randomly until one was found for which the cur-
rent best agent scored lower than 170.  This new trial then
replaced the agent’s current highest scoring trial of the 35.
This process continued until the search was terminated.

This is the most difficult problem that we have attempted
to date.  First and foremost, the agent must somehow avoid
being distracted by one object while it is orienting to an-
other.  If it simply orients to the average position of the two
objects, it will miss both in general.  Second, which object
to attend to first is not always obvious from the outset be-
cause an object that is initially farther away can still reach
the agent first if it is falling faster. We will call this the
passing objects (PO) problem. Finally, in the course of
catching one object, the other object can pass entirely out of
the agent’s field of view, raising an object permanence (OP)
problem. Furthermore, this can occur before a faster but
more distant object passes a closer but slower one, forcing
the agent to choose which to pursue based only on a predic-
tion of which object will reach it first. Thus, a successful
agent must be able to partially decouple its behavior from
its immediate circumstances while still remaining sensitive
to them. It must also be capable of making and remember-
ing predictions about the future configuration of objects
based on observations of their past motion.

Figure 13:  Experimental setup for selective attention ex-
periments. The agent can move horizontally while 2 objects fall
from above. As described in the text, the initial positions and
velocities of the two objects are constrained so that the agent
has a reasonable chance of catching both.



Out of a total of 7 runs, 3 produced agents that scored
higher than 90% on 1000 random trials. The best agent had
a mean performance of 94.2% on the random trials, with the
following breakdown: 97.5% on trials involving neither
passing objects nor object permanence (227/1000 trials),
97.28% on trials involving only passing objects
(152/1000), 93.64% on trials involving only object perma-
nence (329/1000), and 90.72% on trials involving both
passing objects and object permanence (292/1000). Clearly,
trials involving object permanence were difficult, and those
involving both object permanence and passing objects were
even more difficult.  The most difficult cases of all were
those in which one object disappeared from the field of view
before the more distant but faster-falling object passed the
closer but more slowly-falling object (Figure 14, bottom).
There were no such cases in the first 1000 random trials, and
only 8 such cases in 10,000 random trials. On these 8 cases,
the best agent had a mean performance of 79.8%. The other
top agents exhibited a similar pattern of difficulty.

The general behavior of the best agent in each of the four
cases, as well as the especially difficult PO&OP case, is

illustrated in Figure 14. In all cases, the agent tries to keep
both objects in view as long as possible by making large
sweeps back and forth. As objects fall, the agent eventually
tightens its scan on the object it will catch first. Note that
the agent is very decisive in all cases except the PO&¬OP
case. Here, the objects are fairly close together and on con-
verging paths, so they probably form one contiguous object
in the agent’s field of view. This seems to initially confuse
the agent, since its tight scan only slowly drifts toward the
closer object. The other two top agents produced similar
behavior, but they varied in the specific pattern of scanning
they used and how fast they moved. However, detailed analy-
ses of the strategies employed remain to be done.

7 . Conclusion
In this paper, we have extended our previous work on the
evolution of minimally cognitive behavior to a significantly
wider range of tasks, including the perception of body-scaled
affordances, self/nonself discrimination, short-term memory
and selective attention. Our results demonstrate that
CTRNNs can be evolved for a wide range of cognitively
interesting behavior using a relatively simple evolutionary
algorithm. As we have attempted more difficult tasks, shap-
ing by incrementally adding new test cases as evolution
progresses has become an essential part of our methodology.
It is also interesting to note that active scanning is fre-
quently observed in the successful agents that we have
evolved (the short-term memory agents are an exception
because scanning is impossible in that case).  While we
believe that active perception is likely to be a common fea-
ture of distal sensing in situated, embodied agents, it
probably arises in our experiments due to the relatively
coarse spatial resolution of our “visual” sensors.

As we move toward the evolution of increasingly more
cognitive behavior, the most interesting challenge we face is
understanding how the evolved CTRNNs work. While we
have made substantial progress on the analysis of evolved
neural circuits for sensorimotor control (Beer et al., 1999),
the analysis of evolved CTRNNs for more sophisticated
behavior still poses a significant challenge. As internal state
mediates between perception and action in increasingly more
sophisticated ways, the agent’s behavior can become increas-
ingly decoupled from its immediate circumstances while still
remaining sensitive to them. Given that there has been some
skepticism regarding how well intuitions grounded in the
dynamics of situated action will carry over to more cognitive
behavior (Clark, 1997), it will be very interesting to see
how evolution shapes this internal dynamics in order to ac-
complish minimally cognitive tasks. For this reason, the
analysis of evolved CTRNNs for minimally cognitive be-
havior is a major focus of ongoing work.
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Appendix
Choosing the mutation variance σ2 appropriate to a given
problem representation and fitness function is nontrivial. In
lieu of a detailed understanding of the statistical structure of
the search space, it would at least be useful to know the
average change to each parameter produced by a mutation.
In this appendix, we derive an expression for this expected
magnitude of change for our evolutionary algorithm.

Let p be the random perturbation vector added to an indi-
vidual parameter vector x  of size N by mutation.  Then we
seek E{|pi|}, the expected magnitude of any component pi of
p. Due to the spherical symmetry of mutation, this expecta-
tion is identical for all components, so we will focus on the
first component p1 without loss of generality. As described
in Methods above, the magnitude m of p is drawn from a
normal distribution with 0 mean and variance σ2, while the
direction of p is given by a unit vector u uniformly distrib-
uted over the unit hypersphere SN-1. Because these two
distributions are independent:

E p E m E u1 1{ } = { } { }
If m ~ N(0, σ2), then

E m x e dx
x
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In order to motivate our derivation of E{|u1|}, we will first
consider the special cases N = 2 and N = 3 before moving to
general N.  For N = 2, we want the average magnitude of the
projection of u onto x1 (Figure A1, left). At any angle φ
from x1, there are two unit vectors whose projection onto x1

is cos φ.  If we sum up the magnitudes of all such projec-



tions for the entire unit circle and divide by the total “num-
ber” of vectors (given by the circumference of the unit
circle), we obtain the desired average:
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Note that, in order to account for the contribution of the
vectors lying on the left semicircle (whose projections are
–cos φ), we have merely doubled the result for the right
semicircle.

For N = 3, we find a circle of vectors at angle φ from x1

whose projection onto x1 is cos φ (Figure A1, right). The
radius of this circle of vectors is sin φ and the number of
such vectors is just the circumference of this circle or 2π sin
φ.  Thus, the desired average can be found by summing up
the magnitudes of the projections of all such circles of vec-
tors for the entire unit sphere and dividing by the total
“number” of vectors (given by the surface area of the unit
sphere):
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For general N, we will find an (N-2)–sphere of vectors at
angle φ from x1, all of whose projections onto x1 are cos φ.
The radius of this (N-2)–sphere will be sin φ and the number
of such vectors will just be the “surface area” of this (N-
2)–sphere. The desired average can be found by summing up
the magnitudes of the projections of all such (N-2)–spheres
of vectors for the entire unit hypersphere SN-1 and dividing by
the total “number” of vectors (given by the “surface area” of
SN-1):
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where A(N) is the “surface area” of the unit hypersphere SN-1:
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and Γ is Euler’s gamma function.  Then we have that
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The variation of E{|pi|} with N for representative values of
σ2 is shown in Figure A2, along with data from our evolu-
tionary algorithm for the case σ2 = 1, showing that this
expression provides an accurate fit.

If Li is the linear map from a search parameter pi in the
range ±1 to a CTRNN parameter ci, then the expected mag-
nitude of change E{|∆ci|} in ci would be given by L(E{|pi|}).
For example, for a connection weight in the range ±5,
E{|∆ci|} = 5 E{|pi|}. Putting this all together, if a given ex-
pected magnitude of change E{|∆ci|} is desired in a CTRNN
parameter ci, then the mutation variance σ2 should be set as:
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 Of course, in general the desired expected change and the
linear map will be different for different classes of CTRNN
parameters. In this case, some compromise between the dif-
ferent required σ2 must be selected.

φ
x1x1

x2 x2

u

Figure A1: For N = 2 (left), there are two vectors at an angle φ
from x1 whose projection onto x1 is cos φ.  For N = 3 (right),
there is a circle of vectors at an angle φ from x1 whose projec-
tion onto x1 is cos φ. The radius of this circle is sin φ.
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Figure A2:  Variation of E{|pi|} with N for several different
values of σ2. Data from our evolutionary algorithm is plotted
for the case σ2 = 1 (mean of 5000 trials).


