
Evolving Complete Robots with CPPN-NEAT: The Utility of
Recurrent Connections

Joshua E. Auerbach
Morphology, Evolution and Cognition Lab

Department of Computer Science
University of Vermont
Burlington, VT 05401

joshua.auerbach@uvm.edu

Josh C. Bongard
Morphology, Evolution and Cognition Lab

Department of Computer Science
University of Vermont
Burlington, VT 05401

jbongard@uvm.edu

ABSTRACT
This paper extends prior work using Compositional Pattern
Producing Networks (CPPNs) as a generative encoding for
the purpose of simultaneously evolving robot morphology
and control. A method is presented for translating CPPNs
into complete robots including their physical topologies, sen-
sor placements, and embedded, closed-loop, neural network
control policies. It is shown that this method can evolve
robots for a given task. Additionally it is demonstrated
how the performance of evolved robots can be significantly
improved by allowing recurrent connections within the un-
derlying CPPNs. The resulting robots are analyzed in the
hopes of answering why these recurrent connections prove
to be so beneficial in this domain. Several hypotheses are
discussed, some of which are refuted from the available data
while others will require further examination.

Categories and Subject Descriptors
I.2.9 [Computing Methodologies]: Artificial Intelligence—
Robotics

General Terms
Experimentation

1. INTRODUCTION

1.1 Motivation
If robots could operate autonomously in outdoor or other

unstructured environments such as the home or office they
would be of great social utility. However, the vast majority
of robots currently in operation are confined to performing
pre-programmed actions in structured environments such as
factories.

The principles of embodied artificial intelligence dictate
that intelligent behavior must arise out of the coupled dy-
namics between an agent’s body, brain and environment [11,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

2, 25, 7]. This means that the complexity of an agent’s con-
trol policy and physical body (morphology) must be propor-
tional to the tasks it needs to perform. This poses a chal-
lenge when dealing with complex agents acting in complex
environments: it is not always clear how responsibility for
different behaviors should be distributed across the agent’s
controller and morphology.

1.2 Background
By applying evolutionary algorithms to optimize robot

control policies, evolutionary robotics [16, 24] provides a
framework for overcoming the limitations of human intuition
in designing robust, non-linear, control strategies. While
most evolutionary robotics projects have restricted them-
selves to optimizing control strategies for human designed
or bio-mimicked morphologies, evolutionary algorithms may
also be used to design complete robots including their phys-
ical morphologies in addition to their control policies.

Sims [26] was the first to introduce an evolutionary frame-
work in which both the morphology and control of simulated
machines could be evolved in virtual environments to pro-
duce adaptive behavior. This work has been followed by
other studies [14, 21, 1, 22, 20, 17, 19, 18, 28, 15, 8, 10, 9, 3]
which also explored evolving both the morphology and con-
trol policy of robots in virtual environments. This approach
of evolving both morphology and control has the advan-
tage of being able to discover body plans uniquely suited for
the machine’s task environment rather than being artifacts
of human design biases or reproductions of biological mor-
phologies that are only appropriate for that animal’s ecolog-
ical niche. And, importantly, this approach is not restricted
to creating virtual robots, but can be applied to creating
real, physical, robots through the use of rapid prototyping
technologies as demonstrated by Lipson and Pollack [20].

Like these previous studies, the current work also aims to
evolve complete robot morphologies and controllers in vir-
tual environments. While the approach presented here takes
inspiration from these other studies, the methods employed
are distinct in important ways which offer advantages over
previous approaches. The most important distinction is the
type of genomic encoding utilized.

Many of the studies in evolving morphologies and con-
trollers have used indirect or generative genetic encodings.
These have included models of genetic regulatory networks
[15, 8, 10, 9], meta-graphs [26], and context-free grammars
[18]. Specifically it has been demonstrated [18, 19] that such
encodings offer demonstrable benefits in this domain over di-

1475

rect encodings. Among other advantages, indirect encodings
can more compactly represent complex structures and can
provide pathways to creating reusable components.

In the work presented here the genomes of evolved agents
are compositional pattern producing networks (CPPNs) [29].
CPPNs are a form of indirect encoding that have several
desirable properties. They have been shown able to cap-
ture geometric symmetries appropriate to the system being
evolved, are capable of reproducing outputs at multiple res-
olutions [27, 4], and have shown promise in producing neu-
ral network control policies for legged robots [12, 13]. The
combination of these features makes it likely that evolving
CPPNs will prove to be a more promising approach to real-
izing intelligent agents than other previous approaches.

Further advantages can be gained by extending CPPNs
so that evolution can differentially optimize the resolution
of the simulated robots, as demonstrated in [3]. In this case
resolution refers to the size and quantity of a robot’s compo-
nents. This allows a large number of small sized components
to be present in some body locations while a smaller number
of larger sized components is present in other locations. As
an example of why this is desirable, consider evolving a crea-
ture capable of locomoting and grasping different objects. In
order to achieve a high degree of control of the object to be
grasped the robot will need to have highly resolved hands
or grippers, however the main body of the robot may not
require such high resolution. Without the ability to use dif-
ferent resolutions the entire morphology would need to be
as highly resolved as these grippers, which would lead to an
overly large degree of complexity in the morphology, which
would in turn slow down the simulation. With this abil-
ity, on the other hand, a lower resolution model of the main
body can be used which will result in fewer components thus
keeping the morphology from becoming unnecessarily com-
plex, and therefore providing for faster simulations without
sacrificing performance.

This paper extends the work of [3] by allowing CPPNs
to encode embedded neural network controllers as well as
a variety of sensor modalities. Additionally, in the current
work the space of possible morphologies is extended from
the simple single axis morphologies reported in [3], and an
additional class of encoding CPPNs is investigated.

The paper is organized as follows: the next section fur-
ther describes the CPPN encodings used, describes how they
evolve and how they produce actuated robots with embed-
ded neural network controllers. Following that results are
presented which compare using basic feed-forward CPPNs
to those that allow for recurrent connections. It is shown
that recurrent connections are useful in this domain, which
brings up the question of why this is so. The next section
discusses potential answers to this question through an anal-
yses of the evolved robots. Finally a conclusion is presented
and directions for future work are discussed.

2. METHODS

2.1 CPPNs
Compositional Pattern Producing Networks (CPPNs) [29]

are a form of artificial neural network (ANN) where each in-
ternal node can have an activation function drawn from a
diverse set of functions as opposed to being limited to a stan-
dard sigmoid as is the case with classical ANNs. This func-
tion set includes functions that are repetitive such as sine

or cosine as well as symmetric functions such as Gaussian,
thus allowing for motifs seen in natural systems: symmetry,
repetition, and repetition with variation. A thorough de-
scription of CPPNs is beyond the scope of this paper, the
reader is referred to [29] for a more detailed explanation.

2.2 Evolutionary Algorithm
In this work CPPNs are evolved using CPPN-NEAT: an

extension of the NeuroEvolution of Augmenting Topologies
(NEAT) [30], method of neuro-evolution. Though a descrip-
tion of NEAT is beyond the scope of this paper (the reader
is referred to [30] for a complete description) it is impor-
tant to note that CPPN-NEAT begins with small CPPNs
(those without any internal or hidden nodes) and gradually
increases the complexity of the CPPNs over time through
the addition of new nodes and links while dividing the pop-
ulation into“species” for the purpose of promoting genotypic
diversity and allowing novel structural innovations time to
mature.

2.3 Growing Robot Morphologies
and Controllers from CPPNs

In this work actuated robot morphologies and neural net-
work control strategies are grown from the evolved CPPNs.
Each robot is composed of many spherical components with
embedded sensors and neurons (see Figure 4 at the end of
the paper for some example morphologies). The compo-
nents connect to each other either rigidly or via actuated
single degree of freedom rotational joints. The robots are
controlled in a closed-loop fashion via embedded neural net-
works. Specifically the embedded neural networks are Con-
tinuous Time Recurrent Neural Networks (CTRNNs) [6].

CTRNNs are a form of ANN where each neuron has an in-
ternal time constant, τ , and whose updates are governed by
a set of differential equations as opposed to updating at dis-
crete time steps. Additionally CTRNNs contain recurrent
connections, and thus are capable of a form of memory, in
contrast to traditional feed-forward ANNs where such con-
nections are not allowed.

The growth procedure begins with a single component,
henceforth referred to as the root, with a predefined radius
rinit located at a designated origin. A cloud composed of n
equally spaced points is cast around the root such that the
n points are located on the surface of the root sphere (all
n points are at distance rinit from the center of the root).
In the current work, the n points are all located on the
horizontal (x-y) plane at an interval of 0.01 radians for a
total of n = 629 points.

Once this cloud is cast, every point in the cloud is used
to query the CPPN. The CPPN is queried by providing as
input the Cartesian coordinates (x, y, z) of the point in ques-
tion, the radius rparent of the sphere to which it will attach
(rparent = rinit when considering points around the root),
and a constant bias input. These values are propagated
through the CPPN to produce multiple output values. The
first of these outputs is used to determine the “concentra-
tion” of matter at this point and is denoted m. When m is
over a certain matter threshold, Tmatter, it is possible that
a sphere will be placed at that point. The more that m ex-
ceeds the matter threshold the denser a sphere at that point
will be. This creates a continuum from no matter existing at
that location up to having a very dense sphere at that loca-
tion with the possibility of having any intermediate level of

1476

density in between. The second of these outputs is a radius
scaling factor rscale which will determine the radius, r, of the
sphere to be added at that location and therefore provides
for differential resolution as discussed above.

Once the m and rscale values have been determined for
all n points in the cloud the points are sorted in descending
order of the matter output m. The sorted points are then
looped over as the algorithm considers adding a sphere cen-
tered at each point in turn. Specifically a sphere, centered at
point p, is added to the structure if (a) the output value m
of point p is above the threshold Tmatter (b) no other sphere,
besides the one to which this new sphere will be attached
(its parent) has previously been added to the structure with
center located at distance < r away from p, (c) no sphere be-
longing to a different rigid component (with the exception
of those directly connected by a joint) will interpenetrate
this new sphere and (d) this new sphere remains within a
predefined bounded area.

The radius r of a sphere is determined from the radius of
its parent rparent and the output value rscale. Specifically

r =

8><>:
rparent ∗ rscale rmin ≤ rparent ∗ rscale ≤ rmax

rmin rparent ∗ rscale < rmin

rmax rparent ∗ rscale > rmax

That is, the sphere to be added will have radius equal to
that of its parent scaled by a factor determined by the CPPN
output capped by a minimum and maximum possible radius.
This procedure is employed to allow for dynamic resolution
without the possibility of drastically different sized spheres
being connected to each other. If the CPPN were to out-
put the radius of each sphere directly then a sphere might
completely engulf its neighbor which would create additional
challenges for the physical simulation such as creating invalid
interpenetrations.

Once a sphere has been selected for addition to the robot a
third CPPN output, j, which dictates the presence of a joint
is considered. If the output j exceeds a joint threshold Tjoint

the sphere will attach to its parent with a 1-DOF rotational
joint located at the child sphere’s center, otherwise it will
be fused to its parent. The more j exceeds the threshold the
greater the range of motion of the connecting joint will be.
Similar to the matter output this creates a continuum from
connecting rigidly when j ≤ Tjoint to connecting via a joint
with a very narrow range to connecting via a joint with a
large range of motion.

If indeed a given sphere will connect to its parent via a
joint there are several more CPPN outputs which are con-
sidered to determine how this joint is created and how it
is controlled. First, the direction of motion of this joint is
determined by an output θ. θ is used to determine a vector
~n that is normal to the joint’s direction of motion. Since it
is desirable that this vector be normal to the axis ~a defined
by the center of the sphere and the center of its parent the

cross product of ~a and a default vector ~d is taken. This re-
sults in a single vector normal to ~a which is then rotated
around ~a by angle θ. In this way all possible vectors normal
to ~a may be used in constructing the joint and it is left up
to the CPPN to output a single angle θ which determines a
specific normal vector.

When a joint is created a corresponding motor neuron
which will control the joint’s actuation is also created. In
this case two additional CPPN outputs are considered to de-

termine properties of this motor neuron. These outputs are
τ and ω. τ defines the time constant, and ω the bias of this
motor neuron in the underlying CTRNN. The connectivity
of this motor neuron to the remainder of the CTRNN con-
troller is determined after the entire morphology is created,
and is described below.

Whether or not a sphere is connected with a joint or not,
it has the possibility of having one or more sensors embed-
ded in it. Specifically, in the current work, four types of
sensors are allowed and the presence or absence of each type
of sensor within the current sphere is determined by a ded-
icated CPPN output. These sensor types are described in
Table 1. Once again if a sensor is added its connectivity to
the controller is determined after the entire morphology is
created (see below).

Once a sphere is added to the structure and its connec-
tivity, sensor and possible neural network parameters have
been determined it gets placed into a priority queue whose
priority is based on its matter concentration m. When all
points from the current cloud have been considered the al-
gorithm takes the sphere at the top of the priority queue
and casts a point cloud around it and the above procedure
repeats. This process continues until there are no possible
points at which to place spheres or until a maximum number
of spheres has been reached.

Once all spheres have been added through this process
there are a few additional steps taken to complete the con-
struction of the robot. The first of these steps involves prun-
ing joints which connect “leaf” spheres1 to their parents.
This is done to prevent the creation of morphologies with
“invalid” behaviors. Consider such a sphere, a, attached to
its parent via a joint. Recall from above that the fulcrum
of a joint connecting a sphere to its parent is located at the
center of the child sphere. This means that a, not being con-
nected to any other spheres, will simply spin in place when
the joint connecting it to its parent is actuated. The types of
behaviors achievable with such joints are undesirable and so
such joints are removed, their motor neurons are discarded,
and they are replaced with rigid connections.

The final step, as alluded to above, is to determine the
weights of both neuron-neuron and sensor-neuron connec-
tions within the CTRNN. One additional CPPN output,
w, is used to determine these connection weights. For the
sensor-neuron connections it is necessary to distinguish be-
tween the different sensors that may exist at the same loca-
tion. For this purpose additional CPPN inputs are utilized.
There are four additional inputs: one for each sensor that
are set to 1 when determining connectivity from that sensor,
and set to 0 at all other times.

Each pair in {sensors} x {neurons} is queried by providing
the specific sensor input as just described and by providing
the coordinates of the midpoint between the given sensor
and neuron’s locations. Similarly each pair in {neurons}
x {neurons} is queried by providing the coordinates of the
midpoint between the two neurons’ locations. In this way a
monolothic CTRNN controller is created with links from all
sensors to all neurons and links between all neuron pairs (in-
cluding self feedback loops), though links can be effectively
eliminated by having weights near zero.

As opposed to being used as an encoding of robot mor-

1A “leaf” sphere is one which no other sphere has been at-
tached to, and therefore is only connected to its parent. It
is a leaf of the morphological tree.

1477

Sensor Type Sensor Function

Distance Senses the distance to a target: the target emits a sound, and when the target is within sensor
range the distance sensor will output a value proportional to the sound’s volume.

Touch Binary sensor that outputs one when the sphere containing this sensor is touching the ground,
an external object or any other body part it is not immediately attached to. Otherwise outputs 0.

Proprioceptive This sensor is restricted to being placed in spheres that connect to their parent via a joint.
Outputs a value proportional to the current angle of that joint.

Time Outputs a sinusoidal oscillation over time.

Table 1: Sensors: Each sphere may contain any subset of these four sensor types.

phologies, CPPNs have been commonly employed to encode
the connection weights of neural networks via the Hyper-
NEAT algorithm [27]. Customarily the neurons for which
connection weights are to be determined are presented to
the CPPN as existing on independent hyperplanes with two
sets of Cartesian coordinates given as inputs. Even though
the method just described places restrictions on the weight
distributions that can be represented by the CPPN (e.g.
only allowing for symmetric connections) preliminary ex-
perimentation demonstrated that this was not detrimental
to performance in this domain. Accordingly the midpoint
method, with its need for only one set of Cartesian coordi-
nates, is utilized to avoid adding even more complexity to
the already complex CPPNs.

2.4 Selecting desirable robots
The first goal of this paper is to demonstrate that the

methods presented above are capable of evolving robots with
closed-loop CTRNN controllers for a given task. In partic-
ular the task chosen for investigation is maximum directed
displacement of the robot in a fixed amount of time.

To select for this property, a fitness, f is calculated as the
sum of two parts f = r + d. This function first rewards
robots for possessing the components necessary to displace
themselves and sense a target object they are navigating
towards (the r term). Then, if the robot possesses these
necessary components, the robot is placed in a physical sim-
ulator2 for a set amount of time and the second part of the
fitness function (the d term) is calculated.

The r term is used to guide evolution towards potentially
successful solutions prior to simulation and its accompany-
ing overhead, and was formulated based on previous experi-
mentation. It begins with a value of 1. If the robot possesses
any sensors then r is incremented by 1. If the robot possesses
any joints then r is incremented by 1. If the robot possesses
any inter-neuron connections then r is incremented by 1. Fi-
nally, if the robot possesses any sensor-neuron connections
then r is incremented by 1. If the robot has earned all of
these reward points, and one of the robot’s sensors is a dis-
tance sensor (which allows it to remotely sense the target
object) then the robot will be sent to the simulator and r
is incremented by an additional 10 to further reward poten-
tially valid solutions.

If the robot is sent to the simulator it is allowed to act for
a set amount of time or until an early-termination condition
is met. At the conclusion of the simulation, the d term is
calculated as d = dinit−dfinal where dinit is the robot’s initial

2Simulations are conducted in the Open Dynamics Engine
(http://www.ode.org), a widely used open source, physi-
cally realistic, simulation environment

distance to the target object and dfinal is the robot’s distance
to the target object at the end of the simulation.

The first of the early termination conditions is simply to
save computational resources. If all of a robots parts have
completely stopped moving then the simulation is stopped
and dfinal is considered to be the robot’s distance to the tar-
get object at this time. Another condition is used to prevent
robots from exploiting simulation faults. There are a num-
ber of ways these faults could be avoided such as reducing
the step size used for the underlying differential equations
within the simulation, but this would lead to increased sim-
ulation run times. The technique used here is to throw out
any solution where the robot’s linear or angular accelerations
exceed predefined thresholds. In this case as soon as one of
the thresholds is exceeded the simulation is terminated and
dfinal is set to be dinit so that d = 0.

Finally, there are two additional criteria that need to be
met for the d fitness component to be calculated as de-
scribed. These conditions are used to prevent solutions
where the robot moves by rolling on a subset of its compo-
nents. These solutions tend to be common (since the robots
are composed of spheres) but are less interesting than other
solutions that may be found and so are considered invalid.
At the conclusion of a simulation run any robot that is found
to have a subset of its spheres remain in contact with the
ground for over 95% of the simulation time is considered to
be invalid and dfinal is set to be dinit once again. Also at the
conclusion of the simulation the angular velocities of each
rigid body component are averaged over time. If, for any
of these body components, the magnitude of this average
exceeds a pre-defined threshold than the robot is also con-
sidered to be invalid and dfinal is set to be dinit once again.
This ensures that no component is constantly rotating in the
same direction which would be indicative of a robot that is
rolling on a subset of its spheres.

3. RESULTS
In the previously published works using CPPNs to pro-

duce three-dimensional structures and actuated robot mor-
phologies [4, 3] the CPPNs were all restricted to only us-
ing feed-forward connections. That is, recurrent connections
within the CPPNs were not allowed. This policy of not al-
lowing recurrent connections is common when using CPPNs
and was initially copied here, but the question arises: are
recurrent CPPN connections useful in this domain?

In order to answer this question two experimental regimes
are formulated. In the first, the control regime, recurrent
connections are not allowed. In the second, the experi-
mental regime, recurrent connections are permitted. In
both regimes the CPPNs have the values of their nodes reset
prior to every query. Additionally, the CPPNs are updated

1478

Figure 1: Fitness plots for the control and exper-
imental regimes. The experimental regime signif-
icantly outperforms the control for the entire 500
generations. Control is shown blue and experimen-
tal in red. Solid lines denote mean fitness at each
generation, while dotted lines depict +/- one unit of
standard error.

for a fixed number of iterations (in this case 10) before the
output values are retrieved. This update procedure is com-
mon when using feed-forward CPPNs and is used with the
recurrent CPPNs here in order to avoid the complexities of
networks that do not settle down to a steady state (i.e. those
that exhibit cyclic or chaotic dynamics).

Each regime consists of 30 independent trials using CPPN-
NEAT to evolve robot morphologies and embedded CTRNN
controllers for directed displacement as described above. More-
over, all trials are configured to use a population size of 150,
and run for 500 generations with each fitness evaluation in
the simulator given 2500 time steps. Additionally in all ex-
periments the values Tmatter and Tjoint are both fixed at 0.7,
rinit is set to 0.1, rmin is set to 0.05, rmax is set to 0.5,
and each sphere of the structure is restricted to having its
center initially located in interval (0, [−2, 2], 0) (sizes and
coordinates are all in arbitrary ODE units). These values
were chosen based on experimentation to allow for a diverse
range of morphologies that could be stably simulated in a
reasonable amount of time. Before being placed in the sim-
ulator the morphologies are translated vertically such that
the largest component is resting on the ground. The CPPN
internal nodes are allowed to use the signed cosine, Gaus-
sian, and sigmoid activation functions to allow for repetition,
symmetry and variation. All other parameters of the evo-
lutionary algorithm are kept at the default values provided
with the C++ implementation of HyperNEAT3.

Pictures of the top best of run individuals are shown in
Fig. 4 and videos of their behaviors are available online
at http://www.cs.uvm.edu/~jauerbac/. Both regimes pro-
duce robots that can displace themselves in the desired di-
rection on the order of several body lengths in the allotted
evaluation time, however the experimental regime is able to
produce robots capable of displacing significantly farther on

3Available at http://eplex.cs.ucf.edu/hyperNEATpage/
HyperNEAT.html

average then those from the control regime (p-value < 0.001
at the end of 500 generations4).

Fitness plots comparing the two regimes are plotted in
Fig. 1. It can be seen here that the performance difference
is apparent at the beginning of the experiments and exists for
the entire 500 generations of evolutionary time. Moreover,
even when the control regime is allowed to run for twice as
many generations (not depicted here) it still does not achieve
the performance of the experimental regime.

4. DISCUSSION
Since these results demonstrate that including recurrent

connections in the evolving CPPNs significantly improves
the fitnesses achieved, the question arises as to why this is
so. Specifically how are the robots produced from CPPNs
with recurrent connections different from those produced
from CPPNs without these connections? Are they simply
larger or more complex in some way due to the recurrent
feedback loops increasing the saturation of the CPPN’s out-
puts? Do they tend to branch out further or use differently
sized spheres than the morphologies produced in the control
regime? Or, is some other factor critical to their success?

In order to answer these questions a variety of statistics
relating to the body plans of evolved morphologies are com-
puted, and plotted in Fig. 2. While the morphologies from
the experimental regime do tend to use slightly more spheres
and have slightly more leaves, which would be indicative of
the feedback loops increasing output nodes’ saturation, nei-
ther of these differences is statistically significant. Moreover
it cannot be the case that all outputs have this increased sat-
uration because the experimental regime evolves robots with
significantly fewer joints and significantly fewer distance sen-
sors. Therefore some other explanation is warranted.

What if one considers the size of the spheres in the evolved
morphologies? The mean radii across all best of run indi-
viduals from both regimes is nearly identical and the mean
variance of sphere sizes within the individual morphologies
is also similar between the two regimes. Additionally if the
maximum number of spheres separating any sphere from the
root sphere (max depth) is considered, it is also shown not
to differ significantly from one regime to another. So, the in-
creased performance is not caused by having morphologies
that branch out further, have larger spheres or a greater
spread of sphere sizes.

What else may be causing the robots in the experimental
regime to outperform the control runs by such a wide mar-
gin? The robots from the experimental regime do tend to
have significantly fewer components that come into contact
with the ground (both in total number and in fraction of
all body components), and as mentioned above the experi-
mental regime does produce robots with significantly fewer
actuated joints. It is possible that this is indicative of the
experimental regime producing more efficient control strate-
gies, but what in the encoding enables it to do so is still
unclear.

Additionally, when compared to spheres belonging to robots
produced by the control regime, the spheres belonging to
robots produced by the experimental regime are significantly
less likely to contain distance sensors while at the same time
being significantly more likely to contain touch sensors. This

4This and all other p-values reported in this paper are cal-
culated using ttest ind from the SciPy stats package.

1479

Figure 2: Comparison of several different morphological statistics between the best of run robots produced
in the control regime (white) and experimental regime (red). The left hand axis is used for the leftmost six
pairs while the right hand axis is used for the other pairs. Asterisks denote statistics that are significantly
different between the two regimes: * denotes p-values < 0.05, ** denotes p-values < 0.01, and *** denotes
p-values < 0.001

is interesting, because in this directed displacement task,
where the target object is always in the same location, dis-
tance sensors are not necessary (though having at least one
is required by the fitness formulation). So having fewer dis-
tance sensors is a clue that the experimental regime can
better restrict its complexity in useful ways. Similarly touch
sensors can be useful for producing dynamic behavior so the
fact that the experimental regime tends to use more of these
is a clue that it can complexify the morphologies as needed.

Another possibility is that the experimental regime has
found ways to produce morphologies that, while they do not
significantly differ in many of the structural statistics just
presented, do have structural differences not captured by
these statistics. Perhaps answers can be gleaned by visually
inspecting the evolved morphologies. Fig. 4 shows images
of the most fit, best-of-run individuals from each regime. It
appears (although is not yet confirmed) that the robots pro-
duced by the experimental regime create more fractal like
structures which is made possible by the inclusion of the
recurrent CPPN connections. Perhaps this a key to their
success. Fractal patterns are common in biological organ-
isms [5] and it has been proposed that they would be useful
in robotics [23]. Further investigation is needed to determine
if this is indeed the case.

What about the evolved CPPNs themselves? Is there
some structural property of the CPPNs that may provide
an explanation of the experimental regime’s success? Fig. 3
compares a few relevant genotypic statistics. CPPNs evolved
in the experimental regime tend to have fewer nodes and
correspondingly fewer hidden nodes with each of the pos-
sible activation functions. This possibly signifies that these
CPPNs can more easily succeed without the added complex-
ity of additional hidden nodes. A much greater disparity
exists in the number of links (with CPPNs from the ex-
perimental regime having more) but this is not surprising

Figure 3: Comparison of genotypic statistics be-
tween the best of run CPPNs from the control
regime (white) and experimental regime (red). The
left hand axis is used for the number of nodes and
number of hidden nodes with a given activation
function. The right hand axis is used for the number
of links.

considering the much greater number of links that are possi-
ble when recurrence is allowed. Perhaps a more meaningful
statistic is the number of forward links, or those that are
possible in both regimes. Here, once again, CPPNs from the
experimental regime have significantly fewer forward links.
This again suggests that these CPPNs can succeed without
adding as much unneeded complexity.

One last hypothesis is that recurrent CPPNs exist in a
search space that is more conducive to optimizing robot
morphologies compared to their feed-forward counterparts.
If this is the case then through the course of an evolutionary

1480

Figure 4: The Zoo: Pictures of the top eight best of run individuals from the control regime (top) and
experimental regime (bottom). Leaf spheres are colored red while all other spheres are colored blue. Videos
of these robots in action are available at http://www.cs.uvm.edu/~jauerbac

trial it would be more likely that a best of generation cham-
pion would be supplanted by an individual that produces a
topologically different morphology. This is indeed the case:
when a new champion arises in experimental regime trials
96.99% of the time its morphology is topologically different
from the previous champ compared to this happening only
59.92% of the time in the control regime, and this difference
is significant (p < 0.001). Moreover when this does happen
the magnitude of fitness improvements is on average signif-
icantly greater in the experimental regime (0.559 vs. 0.188,
p < 0.001), and even when the new champion is a robot
with the same morphological topology as the old champ the
magnitude of fitness improvements is still greater in the ex-
perimental regime (0.255 vs. 0.100 p < 0.05) indicating that
the recurrent CPPNs are not only more suited to optimizing
morphology, but are more suited to optimizing controllers
as well. Therefore, the space of robots encoded by recurrent

CPPNs is more evolvable, however determining exactly why
this is the case will require additional examination.

5. CONCLUSION
This paper has presented a method for evolving com-

plete robots including their physical topologies, sensor place-
ments, and embedded, closed-loop, neural network control
policies using Compositional Pattern Producing Networks
as the underlying generative encoding. It demonstrated how
this method works on a sample task and showed how includ-
ing the possibility of recurrent connections within the under-
lying CPPNs significantly improves the fitnesses achieved on
that task.

This result poses the question of why including recurrent
connections allows for the creation of more successful robots.
Several hypotheses were presented attempting to elucidate

1481

the matter. Some of these hypotheses were able to be dis-
carded by analyzing statistics of the evolved morphologies
and their underlying CPPNs, while others could not be re-
jected without additional information. Future work will aim
to seek out additional answers to this question in the hopes
of using the knowledge gained to further improve the pre-
sented algorithm.

Additionally, going forward, the authors plan to tackle
more complex tasks such as photo-taxis and object manip-
ulation to test whether the methods used in this work will
continue to be successful and if the utility of including re-
current outputs extends to these other domains.

6. ACKNOWLEDGMENTS
This work was supported by National Science Foundation
Grant CAREER-0953837.

7. REFERENCES
[1] A. Adamatzky, M. Komosinski, and S. Ulatowski.

Software review: Framsticks. Kybernetes: The
International Journal of Systems & Cybernetics,
29(9/10):1344–1351, 2000.

[2] M. Anderson. Embodied Cognition: A field guide.
Artificial Intelligence, 149(1):91–130, 2003.

[3] J. E. Auerbach and J. C. Bongard. Dynamic
Resolution in the Co-Evolution of Morphology and
Control. In Artificial Life XII: Proceedings of the
Twelfth International Conference on the Simulation
and Synthesis of Living Systems, 2010.

[4] J. E. Auerbach and J. C. Bongard. Evolving CPPNs
to Grow Three-Dimensional Physical Structures. In
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), 2010.

[5] P. Ball. Branches: Nature’s Patterns: A Tapestry in
Three Parts. Oxford University Press, 2009.

[6] R. D. Beer. Parameter space structure of
continuous-time recurrent neural networks. Neural
Comp., 18(12):3009–3051, 2006.

[7] R. D. Beer. The dynamics of brain-body-environment
systems: A status report. In P. Calvo and A. Gomila,
editors, Handbook of Cognitive Science: An Embodied
Approach, pages 99–120. Elsevier, 2008.

[8] J. Bongard and R. Pfeifer. Repeated structure and
dissociation of genotypic and phenotypic complexity in
Artificial Ontogeny. Proceedings of The Genetic and
Evolutionary Computation Conference (GECCO
2001), pages 829–836, 2001.

[9] J. Bongard and R. Pfeifer. Evolving complete agents
using artificial ontogeny. Morpho-functional Machines:
The New Species (Designing Embodied Intelligence),
pages 237–258, 2003.

[10] J. C. Bongard. Evolving modular genetic regulatory
networks. In Proceedings of The IEEE 2002 Congress
on Evolutionary Computation (CEC2002), pages
1872–1877, 2002.

[11] R. Brooks. Cambrian intelligence. MIT Press
Cambridge, Mass, 1999.

[12] J. Clune, B. Beckmann, C. Ofria, and R. Pennock.
Evolving Coordinated Quadruped Gaits with the
HyperNEAT Generative Encoding. In Proceedings of
the IEEE Congress on Evolutionary Computing, pages
2764–2771, 2009.

[13] J. Clune, R. T. Pennock, and C. Ofria. The sensitivity
of hyperneat to different geometric representations of
a problem. In Proceedings of the Genetic and
Evolutionary Computation Conference, 2009.

[14] F. Dellaert and R. Beer. Toward an evolvable model of
development for autonomous agent synthesis.
Artificial Life IV, Proceedings of the Fourth
International Workshop on the Synthesis and
Simulation of Living Systems, 1994.

[15] P. Eggenberger. Evolving morphologies of simulated
3D organisms based on differential gene expression.
Procs. of the Fourth European Conf. on Artificial Life,
pages 205–213, 1997.

[16] I. Harvey, P. Husbands, D. Cliff, A. Thompson, and
N. Jakobi. Evolutionary robotics: the sussex approach.
Robotics and Autonomous Systems, 20:205–224, 1997.

[17] G. Hornby and J. Pollack. Body-brain co-evolution
using l-systems as a generative encoding. Proceedings
of the Genetic and Evolutionary Computation
Conference (GECCO-2001), pages 868–875, 2001.

[18] G. Hornby and J. Pollack. Evolving L-systems to
generate virtual creatures. Computers & Graphics,
25(6):1041–1048, 2001.

[19] M. Komosinski and A. Rotaru-Varga. Comparison of
different genotype encodings for simulated
three-dimensional agents. Artif. Life, 7(4):395–418,
2002.

[20] H. Lipson and J. B. Pollack. Automatic design and
manufacture of artificial lifeforms. Nature,
406:974–978, 2000.

[21] H. H. Lund and J. W. P. Lee. Evolving robot
morphology. IEEE International Conference on
Evolutionary Computation, pages 197–202, 1997.

[22] C. Mautner and R. Belew. Evolving robot morphology
and control. Artificial Life and Robotics, 4(3):130–136,
2000.

[23] H. Moravec, J. Easudes, and F. Dellaert. Fractal
branching ultra-dexterous robots (bush robots).
Technical report, NASA Advanced Concepts Research
Project, December 1996. PR-Number 10-86888.

[24] S. Nolfi and D. Floreano. Evolutionary Robotics: The
Biology,Intelligence,and Technology. MIT Press,
Cambridge, MA, USA, 2000.

[25] R. Pfeifer and J. Bongard. How the Body Shapes the
Way We Think: A New View of Intelligence. MIT
Press, 2006.

[26] K. Sims. Evolving 3D morphology and behaviour by
competition. Artificial Life IV, pages 28–39, 1994.

[27] K. Stanley, D. D’Ambrosio, and J. Gauci. A
Hypercube-Based encoding for evolving Large-Scale
neural networks. Artificial Life, 15(2):185–212, 2009.

[28] K. Stanley and R. Miikkulainen. A taxonomy for
artificial embryogeny. Artificial Life, 9(2):93–130,
2003.

[29] K. O. Stanley. Compositional pattern producing
networks: A novel abstraction of development.
Genetic Programming and Evolvable Machines,
8(2):131–162, 2007.

[30] K. O. Stanley and R. Miikkulainen. Evolving neural
networks through augmenting topologies. Evolutionary
Computation, 10:2002, 2001.

1482

