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Abstract

We present a model of multicellular development controlled
by a gene network in which the connectivity is determined
by the proximity of sequences in N -dimensional space. Thus
the sequences of individual genes can be visualised as points
in space which approach or move away from one another as
the genomes evolve. The genotype-phenotype (morphology)
mapping in our model is indirect, relies on artificial physics,
and allows cell adhesion and free movement in 3D space. Cell
differentiation is allowed by positional information provided
by factors that diffuse in this space, and the differential gene
expression in each cell determines the cell fate (such us di-
vision, death, growth and movement). We apply a genetic
algorithm to find genotypes that can direct morphogenesis
of non-trivial asymmetrical shapes. We then investigate the
mechanism of such developmental process and the features
of gene regulatory network that direct the embryogenesis.

Introduction
Generation of two-dimensional (2D) patterns, such as the
French flag (Wolpert, 1969, see also Steiner et al., 2006), is
much simpler then the problem of 3D morphogenesis. Re-
cent progress in this field was facilitated by the introduction
of gene regulatory networks (GRNs) as an indirect regula-
tory mechanism in 3D artificial embryogenesis that relies in
part on simulated physics (e.g. Eggenberger-Hotz, 2003b,a,
2004, see also Bongard and Pfeifer, 2003), in contrast to the
initial more abstract approaches, such as generative encod-
ings (see e.g. Prusinkiewicz and Lindenmayer, 1996).

In biological systems, the structure of GRNs is encoded
indirectly in nucleic acid-based genomes. Coding sequences
are accompanied (usually, preceded) by regulatory areas
(cis-regulators, promoters) which regulate the level of gene
expression. The coding sequences code for functional prod-
ucts: catalysers of biochemical reactions (enzymes, ri-
bozymes), proteins that have structural/mechanical roles,
and finally, regulatory products that bind other products or
bind to regulatory areas in the genome to control the pro-
duction of other products (gene expression). The gene prod-
ucts are the nodes in the biological GRNs while the edges
are defined by regulatory interactions. The amino acid se-
quence of a protein product (or a nucleotide sequence of

an RNA molecule) defines its 3D structure in a way that is
still far from being fully understood (this is the so-called
folding problem). Interactions between three-dimensional
molecules (between proteins, proteins and nucleic acids, and
between RNA molecules, etc.) are even more difficult to
model.

Several approaches to encode the structure of the artificial
GRNs in the genome using an abstraction of this “lock and
key” mechanism of molecular recognition have been pro-
posed. For example, product-promoter affinity can be deter-
mined in an all-or-none manner by a direct match between
numbers assembled from the digits in the genomic sequence
(Quayle and Bullock, 2006) or coded directly in the genome,
possibly with real-number rounding (Bongard and Pfeifer,
2003). Jakobi (1995) used a different approach, with pro-
moter affinity (a discretised value from 0 to 1) determined
by the match between triplets of “chemicals”: characters
in a regulatory protein sequence (from a 64-letter alphabet)
and in the genome (from a four-letter alphabet). The triplets
are found indirectly in a metaphor of genome scanning by
the RNA polymerase, folding of the regulatory protein, and
protein-protein interaction between them. The method pro-
posed by Eggenberger-Hotz (2003a) is much simpler and
relies on direct proximity of real numbers encoded in the
genome. Bit-by-bit comparison of 32-bit integers is another
method of similar complexity (Banzhaf, 2003; Kuo et al.,
2004). Bentley (2003) proposed a much more indirect ap-
proach based on encoding the coordinates for subsets of
Mandelbrot set and matching their similarity.

We extend the approach that uses the proximity of real
numbers (a 1D approach) by introducing a model of GRN in
which product-promoter affinity depends on the Euclidean
distance between points in N -dimensional gene sequence
space. As the genomes evolve, these points approach or
move away from one another.

The Model
Outline
In the model of embryogenesis proposed here, multicellu-
lar development starts from a single cell. Each cell of an



individual has the same linear genome: a list of genetic el-
ements. Each element is characterized N+1 real values (N
coordinates in the gene sequence space and a gene modi-
fier, see below) and an integer (element type), with “gene”
(a metaphor of a coding sequence) and “promoter” (an ab-
straction of a regulatory region) as the main types.

One of the key interests in our research is the gradual in-
crease in complexity of regulatory networks and inherent
mathematical properties of the corresponding graphs. We
thus allow the genomes of arbitrary size and regulatory units
that have no upper limits on the number of nodes they di-
rectly interact with. Furthermore, we provide multiple lay-
ers of possible interactions in developing artificial organisms
for evolution to tinker with. On the most basic level, in-
side a single cell, the products that we call “internal” have
affinity to promoters and control the expression of other
genes. On the level of a whole organism, special class of
products (“external products”) may diffuse from the source
cell. External products may have affinity to promoters but
also to products belonging to another class: receptors. Thus
external products are a metaphor for morphogens in natu-
ral embryogenesis, and their interactions provide a mecha-
nism for cell differentiation and differential growth. Further-
more, cells develop in an environment with simple simulated
physics: overlapping cells repel each other while daughter
cells are attached to the mother cells with simulated springs
(a metaphor of adhesive forces between cells).

Regulatory Units
Regulatory units are formed from a series of promoters fol-
lowed by a number of genes and are the basic building
blocks for the structure of the GRN. There are a metaphor
of regulatory units in nucleic acid-based genomes, in which
several protein- or RNA-coding regions can be under the
control of several regions that affect gene expression at dif-
ferent levels: pre-transcriptional, post-transcriptional (sta-
bility, transport, and translation of transcripts), and post-
translational (stability, transport and activity of proteins).

The majority of existing models of artificial embryogeny
follows the scheme of multiple promoters and one product
(e.g. Beurier et al., 2006; Steiner et al., 2006; Eggenberger-
Hotz, 1997, 2003b,a, 2004). However, many-to-many rela-
tionship between the promoters and regulated genes is com-
mon both in prokaryotes and eukaryotes (Gerstein et al.,
2007). Indeed, clustering of several genes in so-called oper-
ons is not, as originally thought, restricted to bacteria, but
common also in eukaryotes (for a recent review, see Blu-
menthal, 2004; Gerstein et al., 2007). Such arrangement
allows for co-regulation of co-transcribed genes that are
closely related functionally (for example, involved in the
same biochemical process). A similar logic applies to multi-
ple transcripts sharing common regulatory regions (promot-
ers, enhancers, silencers; Gerstein et al., 2007), polypro-
teins, and ineed, multidomain proteins (with domains re-

sponsible for separate functions).
To locate regulatory units in our model, each genome is

scanned linearly. Whenever a sequence of elements consist-
ing of at least one promoter followed by at least one gene is
detected, it is treated as one unit that extends until the next
promoter. Promoters and genes outside regulatory units are
ignored. For example, in a genome “GGGppGpGGpGpp”
(where each p is a promoter and each G a gene), three regu-
latory units (square brackets) exist: GGG [ppG] [pGG] [pG]
pp.

Two types of promoters are introduced: additive and mul-
tiplicative. To compute the level of activation of a regulatory
unit (the expression level of all of the products), we first
compute the activity of all of its promoters:

pi =
K∑

k=1

Lkwk,i . (1)

where pi is the activity of a given promoter, K is the total
number of regulatory factors in the genome (e.g. internal
or external products, see below), Lk denotes the perceived
level of the factor k, and wk,i is the promoter-factor affinity:

wk,i =


dk,i ≤ 5 : sgn(mkmi)

2|mkmi|(5−dk,i)
10d+|mkmi| ;

dk,i > 5 : 0 .

(2)

where dk,i is the Euclidean distance between the sequences
of the promoter i and the gene of factor k, while mk and mi

are the values of their modifier fields. In other words, affinity
is 0 (no interaction) when the distance is larger than 5, and
at a maximum (10) when the distance is 0. For intermediate
distances, the affinity falls hyperbolically, rapidly for small
|mkmi| and approximately linearly for large |mkmi|. The
signs of the modifiers determine if the effect is inhibitory or
excitatory.

All the genes belonging to a given regulatory unit have
the same level of expression:

LΩ = f(
I∏

i=0

pm,i

J∑
j=0

pa,j) . (3)

where I and J denote the number of multiplicative and addi-
tive promoters (respectively) and pm,1..i and pa,1..j describe
their activations. It is possible to allow for the bias in activa-
tion (pm,0, pa,0), but we use the identity element of, respec-
tively, multiplication and addition (pm,0 = 1,pa,0 = 0). f
is a sigmoidal function returning value from (0,1) with the
threshold at 0.5 (the steepness of the sigmoid was kept con-
stant in all the experiments).

The presence of a multiplicative promoter in a regulatory
unit results in a strict requirement for the expression of the
associated product, otherwise the whole unit remains inac-
tive. This feature (where a subset of transcription factors is



necessary to initiate gene expression in an ‘all-or-nothing’
fashion) is known to be common in gene regulation but
would not be easily captured by a purely additive function.
Additionally, introducing multiplicative promoters provides
evolution with a mechanism to switch off the whole regula-
tory unit with a single mutation.

Products

We introduce three types of products that can be coded by
genes in a regulatory unit: internal, external and receptors.
Internal products affect the expression of the regulatory units
only in the cell in which they are produced. External prod-
ucts (morphogens) diffuse from the producer cell and bind
to promoters and receptors in other cells. Receptors, on the
other hand, interact with external products and influence the
axis of cell division (the division vector) by shifting it toward
or away from the source. Since the cells may differ in the
pattern of gene expression, also their set of active receptors
may be different. This allows each cell to orient its division
in relation to the pattern of morphogens that are available at
a given moment.

The affinity between a morphogen and a promoter or a
receptor is defined by Eq. 2, but to simulate simple diffusion,
the perceived concentration of the morphogen depends not
only on the level of production but also on the distance from
the producing cells (the sources). The level of morphogen
m perceived by the cell c is:

Lc,m =
I∑

i=1,i6=c

li,m
1

1 +Di,c
. (4)

where I denotes the number of cells at the current develop-
mental stage,Di,c is the distance from the cell c to the source
i in the 3D space of the developing organism and li,m is the
level of morphogen m this source produces (the expression
level of the morphogen, Eq. 3).

Additionally, to simulate some of spatiotemporal effects
generated by diffusion, the actual value of li,m is delayed in
time, depending on the distance from the source. This adds
some additional memory cost of storing morphogen levels
from previous time steps for each morphogen in each cell,
but at basically no additional computational cost. Alterna-
tively, one could obtain more realistic diffusion by simu-
lating a 3D grid in which morphogens would diffuse (e.g.
Beurier et al., 2006; Steiner et al., 2006). However, compu-
tational cost of updating fine-grained diffusion levels in 3D
would be considerable.

Other Types of Genetic Elements

Three additional element types exist: pseudogenes, external
factors and effectors. They are ignored when the genome is
scanned for regulatory units.

Pseudogenes. If any genetic element is mutated to a pseu-
dogene, its sequence will be shielded from the selective pres-
sures until another mutation changes the element type.

External factors. External factors act in exactly the same
way as external products (that is, they may interact with reg-
ulators and receptors), however their levels of expression are
not regulated by the cell: the factors are provided externally
at predefined levels. Also, for the positional factors (see be-
low) the source locations are predefined. External factors
can be thus viewed as inputs of the GRN and their possi-
ble interactions with receptors is an initial mechanism for
breaking the symmetry of cell divisions.

Two subclasses of external factors are introduced. The
first one consists of positional morphogens, emitted from
four different points in three-dimensional space. They are
a metaphor for maternal factors in natural embryogenesis.
Thus each cell is provided with enough positional informa-
tion to locate itself in 3D (four points is the minimal number
that allows 3D trilateration). The perceived level of the posi-
tional external factors in a particular cell depends on the Eu-
clidean distance to the source, in the same way as the level
of external products (Eq. 4).

The perceived level of external factors in the second class
does not depend on cell location. The level of one is constant
throughout the development (a “1” signal), so it can be used
as a simple threshold for any of regulatory unit in the GRN.
The other provides a time signal, its expression increasing
linearly from 0 to 1 during the developmental process. The
next two are somewhat related: a generation counter (incre-
mented in each daughter cell after division), and the energy
depletion level, which increases from 0 to 1 (each cell di-
vision has some cost for both the daughter and the mother
cell). The level of the last factor in this class depends on
the number of neighbours (saturating at 1 for 8 cells in close
proximity) and thus allows the cell to detect when it lies in a
densely packed cell structure.

Effectors. Effectors can be viewed as outputs of the
GRNs. They either correspond to actions each cell can take
during the development or allow to adjust the parameters
of the developmental process. Each effector is defined by
its sequence in the N -dimensional gene space, and products
that have their sequences close enough will add to its activa-
tion (using Eq. 2). In a way, this parallels the promoters, and
indeed one can consider each effector as a special regulatory
unit with a single promoter.

Cell actions consists of all-or-none responses when ac-
tivation levels of corresponding effectors reach a certain
threshold. These are: division, apoptosis (programmed cell
death) and freezing (after which expression levels in the cell
are no longer updated). In the second group of effectors, the
following parameters are updated by a value corresponding
to the activation level defined by Eq. 3: cell radius, spring



length, internal division vector length and internal division
vector angles.

Since the list of possible effectors and external factors is
predefined and we prefer to avoid defining a separate ele-
ment type for each, the assignment of a given element cod-
ing an effector or an external factor to a particular function
depends on its order in the genome. After all the functions
are assigned, the rest is treated as pseudogenes.

Development
Development starts from a single cell and proceeds over dis-
crete time steps. It stops either when a maximum time step
is reached or when an individual embryo exhausts its initial
energy.

The state of each cell is determined by the expression lev-
els of all of the products in the genome, cell coordinates in
3D space (these are real values, no grid is used), cell radius,
the orientation of the cell division vector, energy level, and
several parameters related to the physical model. As the fate
of the cells depends on the differential gene expression, it is
essential to provide a mechanism that will break the initial
symmetry of cell divisions. This is the function of the initial
gradients of positional external factors. A similar mecha-
nism is known to direct the initial stages of insect embryo-
genesis (for a popular introduction, see Carroll, 2005).

When a new cell is formed, it is attached to its mother with
an elastic spring and placed at a very small distance, so the
two cells initially overlap in space. The default length of the
spring is equal to the sum of cells‘ radii and can be increased
by designated effector gene, if present. During subsequent
time steps after division, the elasticity of the spring will push
away the cell in the direction of the mother’s division vec-
tor. The spring ensures that the new cell moves away in the
desired direction while remaining close to the mother, sim-
ulating simple adhesion. Repulsion between any two cells
(at a certain distance) ensures that the cells do not overlap
in space. To prevent brusque movements of the cells, their
motion is slowed down with simulated viscosity. In a man-
ner similar to spring length, the radius of the daughter cell is
controlled by a dedicated effector. No activity means default
value, maximum activity translates into a twofold increase.

The position of the daughter cell after division is influ-
enced by two mechanisms, each corresponding to one of two
auxiliary vectors maintained for each cell: the internal and
external division vector. The direction of the sum of these
two vectors (the cell division vector) gives the direction of
the spring that attaches the daughter to the mother cell.

The first mechanism is directly based on the mechanism
used in 3D L-systems (Prusinkiewicz and Lindenmayer,
1996). A daughter cell inherits the internal vector from the
mother. At this point the vector is rotated in the daugh-
ter cell. Each of the three angles of rotation is affected by
the expression of one of three effectors in the mother cell
(Prusinkiewicz and Lindenmayer, 1996). If the effector is

activated (Eq. 1), the rotation is positive, repression by in-
hibitory regulators results in negative rotation. An additional
effector is used to determine the length of the internal vec-
tor. The default vector length is 0, which means that if there
are no products acting on this effector (or the element corre-
sponding to it is not present in the genome), the direction of
the cell division vector will not be influenced by this mech-
anism.

The second mechanism allows to orient the vector to-
wards or away from morphogen sources. High positive affin-
ity between the sequence of an active receptor and the se-
quence of a morphogen perceived in the cell shifts the di-
rection of the external vector toward the source of this mor-
phogen. Negative affinity shifts the vector in the opposite
direction. The overall effect is a sum of interactions of all
receptors in the given cell with all morphogens produced by
every source:

~Vc =
R∑

r=1

M∑
m=1

S∑
s=1,s6=c

lrwr,mLc,m
~δs,c . (5)

where R denotes the total number of receptors in the
genome, M the total number of external products and exter-
nal factors defined in the genome, S is the number of sources
(cells and four positional external factors), lr is the expres-
sion level of the receptor r in the cell (Eq. 3), wr,m is the
morphogen-receptor affinity (Eq. 2), Lc,m is the perceived
level of the morphogen (Eq. 4), and ~δs,c is the normalized
vector from the given cell to the source.

To allow for a control of cell divisions, we provide
an input to the GRNs that is a metaphor of the nutri-
tional/energetical state of the cell. Since in our model each
cell division has some energetical cost, the cell energy can
be exhausted by rapid divisions. The same applies to the
whole developing individual: there is a limit on the total
energy that can be used during the development. As mu-
tations causing uncontrolled cell divisions put a high drain
on computational resources during evolution, early exhaus-
tion of such individual’s energy can help keep the problem
in check. Additional biological realism is introduced by re-
quiring a brief (10 simulation time steps) period of division
arrest right after a division, both in the mother and in the
daughter cell. Arrested cells update the state of their GRN
normally but cannot divide no matter how high the expres-
sion of the corresponding effector. This has an additional
advantage of giving the simulated physics the time to adjust
the position of the new cell.

Fitness evaluation
The most obvious way to assess the fitness in simulations of
morphological development is to count how many cells fit
inside the desired shape, penalising for each cell outside the
shape (e.g. Kumar, 2004). This approach works well when
cells can only take certain locations on the grid, but leads to



undesired results when cells take arbitrary positions in space
and can temporarily overlap. The possibility to reach high
fitness by producing densely packed and highly overlapping
cells would allow to exploit the simulated physics and other
features of the model in an unintended way. We propose
an alternative: a cuboid in 3D space that contains the tar-
get shape is divided into cubical voxels and each voxel is
marked either as internal or external to the shape. To com-
pute fitness, we iterate over each cell and check whether they
occupy internal voxels, and if so, those voxels are marked as
occupied. This approach has several advantages. First of all,
it is efficient and allows to avoid repeated scoring of voxels
occupied by overlapping cells. Secondly, it allows the cells
to adopt different sizes (and even shapes, although this is not
explored here). Finally, it is possible to give higher weights
for some of the voxels to assist the evolution of morpholo-
gies that otherwise do not evolve easily.

Implementation
The computations are simplified by first transforming the
genome into a GRN graph, in which only if the distance
between the sequences is smaller than the threshold (5), an
edge is drawn (see Eq. 2). During the development, it al-
lows to update the state of the GRN using a list of factors
that affect each promoter or receptor.

The dynamics of cell movement is simulated with sim-
ple Newtonian physics, using Runge-Kutta 4th-order inte-
gration. Springs behave according to Hooke’s law and ad-
ditional repulsive force is introduced between any two cells
that overlap.

For complex GRNs it takes considerably less time to com-
pute the new location of the cells compared to the time taken
to update the state of the GRN. It is thus possible to update
the GRN state, for example, only every 10 steps of simulated
physics.

Genetic algorithm
All the results obtained in this work were obtained using
a generational genetic algorithm with constant-size popu-
lation of 300 individuals. A new generation was formed
by copying 5 genomes without mutation (elitism), 150 with
mutations and crossover, and 145 by mutation only. We al-
lowed for multi-point crossover between genomes of differ-
ent sizes. The candidate genomes for the next generation
were chosen using tournament selection (which is not sus-
ceptible to the scaling of the fitness function). Elite individ-
uals replaced the elite individuals from the previous gener-
ation if their fitness was equal. This allows elite genomes
to wander through the neutral regions in the sequence space
(which may allow for a more efficient evolutionary search,
Shipman et al., 2000).

The elements in the genome are the lowest level of ab-
straction in our model, so the genetic operators were de-
signed to work on the level of the genetic elements (rather

than single bits or real values): each had a predefined proba-
bility of occurrence per element in a genome and per genera-
tion. The first operator results in a modification of the mod-
ifier or of the coordinates in the N -dimensional sequence
space. The coordinates are modified by addition of a small
value drawn from a Gaussian distribution. This operator cor-
responds to simple mutations in nucleic acid sequence (such
as point mutations, short deletions and insertions in the cod-
ing or regulatory sequences). The second mutational opera-
tor, on the other hand, does not have any obvious biological
interpretation, and allows to change the sign of the modifier.
Another mutational operator allows for a change in the ele-
ment type (with unequal probabilities for each type), in par-
ticular, a change of any element to a pseudogene and vice
versa, with an obvious biological parallel. However, we al-
low any type change, which includes a direct change of a
receptor into a morphogen or a promoter to a product (and
vice versa), while conserving the sequence. In further work,
we plan to explore if this feature helps evolution, at any rate,
it does not have an obvious natural counterpart.

The remaining mutational operators act on the level of
whole elements (element deletion, duplication, and insertion
of a randomly created element) and the whole genome: dele-
tion of a segment of the genome with random start and end
point and a duplication of such a segment to a random posi-
tion in the genome.

In the experiments described below, we set the probabil-
ities of deletions to be around twice as high as probabili-
ties of element duplications and insertions. Such deletion
pressure restricts the accumulation of elements whose pres-
ence does not affect fitness (i.e. in which mutations are neu-
tral) and so prevents the unnecessary growth of genome size.
This particular solution to the genome size issue was partly
motivated by biological realism (Charles et al., 1999), and
partly by difficulties in properly balancing the fitness func-
tion faced by an alternative: a fitness cost to larger genomes.
However, some level of neutral elements (which include
pseudogenes) is beneficial. In natural genomes the presence
of regions in which mutations do not affect the phenotype
(neutral regions, junk DNA) allows for the appearance of in-
novations beneficial from the point of view of natural selec-
tion (Shipman et al., 2000). Such regions are shielded from
the selective pressures which allows for bolder movements
in the sequence space.

Results
In all our experiments, the evolution started from the same
simple genome (Fig. 1A) designed by hand and containing
four regulatory units, all regulated by external factors. The
products in two units have effect on the division effector,
two other induce rotation of the internal division vector and
its length. The remaining external factors and effectors are
defined but the nodes are not connected to the others in the
GRN (and are not shown in Fig. 1B). The number of dimen-



sions of the gene sequence space was set to two.
In a way, the presented model attempts to trade simplicity

for biological realism. In further work we plan to address
the question whether the model can be simplified (or, in-
deed, complicated). Before it is possible, we need to ask
if this initial version allows for efficient search in non-trivial
fitness landscapes, by challenging the genetic algorithm with
target shapes of different difficulty. While highly symmetric
structures (spheres, ellipsoids) or slightly more demanding
half-ellipsoids evolved quite easily (not shown), asymmet-
ric morphologies, shown on Fig. 2 are a difficult task, and
usually over 500 generations were needed to find a solu-
tion. Interestingly, the solutions found by the genetic al-
gorithm did not rely on cell death (a mechanism that we ob-
served to be used often in the development of half-ellipsoids;
not shown) but rather on differential cell division and cell
growth (changing cell radius) in different regions.

A. B.

Figure 1: The seed genome (A) and the corresponding gene
regulatory network (GRN; B). The genome consists of 27
elements (the value of the modifier, the coordinates in 2D
sequence space are listed on the right): 8 external factors
(the first 4 are positional factors, with 3 coordinates in 3D
developmental space), only 2 of which are connected to the
GRN, and 9 effectors, of which only 5 are connected, and 6
genes in 4 regulatory units.

The genome of the best stem-cap individual (Fig. 2A)
codes for only three external products. To investigate their
role, we have used a standard procedure used in molecular
biology: knock-out experiments. Only the deletion of one of
3 morphogens (mpg3 or capless) had a large effect on fitness
(Fig. 3A): no cap formation. Adding the third dimension to
the sequence space allows to incrementally move the posi-
tion of capless away from the plane in which all the other
genes lie. This is a simple way to decrease the weight of
a connection between a given gene and all the other nodes
in the GRN, and corresponds to introducing point mutations
as opposed to gene deletion. It can be seen (Fig. 3B) that

A.

B.

Figure 2: Difficult target shapes (left; the sphere marks the
position of the first cell, dots represent target voxels): stem-
cap (A) and asymmetrical dumb-bell (B), and best evolved
solution phenotypes (right).

the effect of such operation on the development is ”dose-
dependent”: the more the sequence was disturbed, the larger
the effect. We can conclude that expression of capless al-
lows for the development of a defined morphological struc-
ture.

A.

B.

∆mpg1 ∆mpg2 ∆mpg3

z=1 z=1.25 z=1.5

f=0.62 f=0.67 f=0.8

Figure 3: Mutational analysis of the best-solution individual
to the stem-cap target. Only the deletion of one of 3 mor-
phogens (mpg3 or capless) has a large effect on fitness (A).
Shifting the location of this morphogen away from the XY
2D plane in which all the other genes lie (along the Z axis)
has an incremental effect on fitness (B).

Interestingly, both the production and the perceived level
of this morphogen in the developing structure is not asym-
metrical along the main axis of development (Fig. 4A). It
seems that all the cells produce this factor and its perceived
concentration increases dramatically after the developmen-
tal step 60 when the cell number doubles (cell divisions are
synchronised in the development of this individual, taking



the advantage of the division arrest mechanism). This means
that it is not the asymmetry of capless expression that allows
for the cap formation. Rather, the increase in concentration
of this morphogen at step 60 causes asymmetric cell divi-
sion and cell growth when the cell number doubles again
after step 70. In other words, another mechanism must be
used for cell differentiation along the embryo axis. We con-
firm this conclusion by creating an embryo in which all the
cells express capless at a constant level (Fig. 4B).

A. B.

step: 60 61           62               70                       71  

Figure 4: The perceived level of capless in the develop-
ment of a stem-cap structure. Panel A shows the level of
this morphogen in the best-solution individual at different
developmental steps. Panel B: the phenotype of an individ-
ual in which all the cells produce capless at the same level
throughout the development.

Fig. 5 presents a graph representation of a GRN control-
ling the development of asymmetric dumb-bell shown on
Fig. 2B. It can be observed that majority of high-weight con-
nections are inhibitory. It is also interesting that only some
of the inputs (constant signal, only one spatial external fac-
tors out of four) and possible effectors are used. In other
words, the development takes advantage of the changes in
cell radius, internal division vector length and its rotations
in two directions out of three allowed by the model. The
developmental mechanism in this particular GRN does not
use cell death, freezing or changes in spring length. The
analysis of other GRNs evolved in our experiments also
showed that only a subset of developmental mechanisms
is actually needed to enable the morphogenesis of non-
trivial shapes. However, quantitative analysis of hundreds
of evolved GRNs would be necessary to infer any general
properties of evolved networks.

Figure 5: The GRN controlling the development of a asym-
metrical dumb-bell shape in Fig. 2B. Dashed lines corre-
spond to excitatory connections.

Discussion and Future Work
Our model extends the ideas first presented in several semi-
nal papers by Eggenberger-Hotz who introduced GRNs with
the affinity based on the similarity of real numbers (albeit
in one dimension, 2003b; 2003a; 2004) and physics based
on springs (2003b; 2003a). However, in this previous work
cells grow on a grid and the embryo structure is further re-
shaped by controlling the forces between neighbouring cells.
In contrast, in our model the development relies on cells of
different size dividing freely in 3D space, and pushing each
other away.

At the present stage, many features can be seen as unnec-
essary complications. Future work will show how many can
be removed without compromising the ability of the evo-
lutionary process to solve non-trivial tasks. Some parame-
ters were included to allow future analysis of their effect on
evolvability (this influenced, for example, our choice to use
the insertion/deletion ratio as a way to control the genome
size). At this preliminary stage, only a perfunctory analy-
sis of the values of many parameters was possible (this ap-
plies, for example, to the thresholds in Eq. 2). Moreover,
some parameters are related (for example the optimal value
of the thresholds depends on the average size of mutational
steps). However, the analysis of the effects of the inclusion
of some parameters and their particular values on evolvabil-
ity requires systematic experiments that need considerable
time.

The main drain on computational resources in our experi-
ments is frequent apparition of individuals which develop by
uncontrolled cell divisions, and the energy depletion mech-
anism plus a limit on cell number, while keeping this prob-
lem in check, limits the potential of the artificial embryol-
ogy. One of the possible solutions is to allow for a slow
increase of energy in a manner that will reward slow con-
trolled growth.

On the other hand, some features can be viewed as un-
necessary simplifications. Perhaps tethering the daughter
cells just to the mother cells is one of them, and since we
already introduce the concept of cellular neighbourhood,
attaching the cells to the neighbours (possibly taking ad-
vantage of the receptor compatibility) may provide a fruit-
ful direction of further development (Bongard and Pfeifer,
2003; Eggenberger-Hotz, 2003b,a, 2004). Another direction
is to allow dynamic changes in cell size and spring forces
(in the present version both remain set after division; cf.
Eggenberger-Hotz, 2004 where a similar feature allows for
simple locomotion).

It would be also interesting to increase the realism of dy-
namics of gene expressions by introducing finite rates of
change in product concentrations, represented with differ-
ential equations (e.g. as in Banzhaf, 2003; Kuo et al., 2004).

We might, however, argue that the shape of the parameter
space in our model is not as complex as in the models pre-
sented previously. For example in the Eggenberger’s model



each product is specified by as much as 7 different param-
eters. Since our model allows to compare the efficiency of
the evolutionary search in gene sequence spaces of different
dimensionalities, we will be able to investigate this issue in
future work.

Primarily, however, we plan to go beyond the genetic al-
gorithm as an approach to investigate the interplay between
evolution and ontogeny using our model. The development
of an actual artificial life setting, with competition for lim-
ited resources in a simulated world with a spatial structure
(that would allow for at least temporal separation of subpop-
ulations) will be the main objective of our further work. A
genetic algorithm is a search method that allows only for a
preliminary assessment of evolvability, but has obvious lim-
itations: features like elitism, tournament selection, constant
population size, fixed values of the parameters of the evolu-
tionary process are not features of natural selection. Only an
artificial life setting will allow to properly investigate such
issues like the effects of the episodes of low population sizes,
and the ability of the self-adapting systems that can tune
their mutation rates to reach new adaptive peaks. We believe
that only in such a setting some evolutionary questions con-
sidering the robustness of the network (and the related ques-
tion epistasis), the role of mutations in regulatory regions for
the evolutionary innovations, and the statistical properties of
the evolved GRNs can be meaningfully explored.
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