
Deep Neuroevolution: Genetic Algorithms are a Competitive Alternative for
Training Deep Neural Networks for Reinforcement Learning

Felipe Petroski Such Vashisht Madhavan Edoardo Conti Joel Lehman Kenneth O. Stanley Jeff Clune

Uber AI Labs
{felipe.such, jeffclune}@uber.com

Abstract
Deep artificial neural networks (DNNs) are typ-
ically trained via gradient-based learning al-
gorithms, namely backpropagation. Evolution
strategies (ES) can rival backprop-based algo-
rithms such as Q-learning and policy gradients
on challenging deep reinforcement learning (RL)
problems. However, ES can be considered a
gradient-based algorithm because it performs
stochastic gradient descent via an operation sim-
ilar to a finite-difference approximation of the
gradient. That raises the question of whether
non-gradient-based evolutionary algorithms can
work at DNN scales. Here we demonstrate they
can: we evolve the weights of a DNN with a sim-
ple, gradient-free, population-based genetic al-
gorithm (GA) and it performs well on hard deep
RL problems, including Atari and humanoid lo-
comotion. The Deep GA successfully evolves
networks with over four million free parameters,
the largest neural networks ever evolved with
a traditional evolutionary algorithm. These re-
sults (1) expand our sense of the scale at which
GAs can operate, (2) suggest intriguingly that
in some cases following the gradient is not the
best choice for optimizing performance, and (3)
make immediately available the multitude of
techniques that have been developed in the neu-
roevolution community to improve performance
on RL problems. To demonstrate the latter, we
show that combining DNNs with novelty search,
which was designed to encourage exploration on
tasks with deceptive or sparse reward functions,
can solve a high-dimensional problem on which
reward-maximizing algorithms (e.g. DQN, A3C,
ES, and the GA) fail. Additionally, the Deep
GA parallelizes better than ES, A3C, and DQN,
and enables a state-of-the-art compact encoding
technique that can represent million-parameter
DNNs in thousands of bytes.

1. Introduction
A recent trend in machine learning and AI research is that
old algorithms work remarkably well when combined with
sufficient computing resources and data. That has been
the story for (1) backpropagation applied to deep neu-
ral networks in supervised learning tasks such as com-
puter vision (Krizhevsky et al., 2012) and voice recog-
nition (Seide et al., 2011), (2) backpropagation for deep
neural networks combined with traditional reinforcement
learning algorithms, such as Q-learning (Watkins & Dayan,
1992; Mnih et al., 2015) or policy gradient (PG) methods
(Sehnke et al., 2010; Mnih et al., 2016), and (3) evolution
strategies (ES) applied to reinforcement learning bench-
marks (Salimans et al., 2017). One common theme is
that all of these methods are gradient-based, including ES,
which involves a gradient approximation similar to finite
differences (Williams, 1992; Wierstra et al., 2008; Sali-
mans et al., 2017). This historical trend raises the question
of whether a similar story will play out for gradient-free
methods, such as population-based GAs.

This paper investigates that question by testing the perfor-
mance of a simple GA on hard deep reinforcement learning
(RL) benchmarks, including Atari 2600 (Bellemare et al.,
2013; Brockman et al., 2016; Mnih et al., 2015) and Hu-
manoid Locomotion in the MuJoCo simulator (Todorov
et al., 2012; Schulman et al., 2015; 2017; Brockman et al.,
2016). We compare the performance of the GA with that
of contemporary algorithms applied to deep RL (i.e. DQN
(Mnih et al., 2015), a Q-learning method, A3C (Mnih et al.,
2016), a policy gradient method, and ES). One might ex-
pect GAs to perform far worse than other methods because
they are so simple and do not follow gradients. Surpris-
ingly, we found that GAs turn out to be a competitive al-
gorithm for RL – performing better on some domains and
worse on others – adding a new family of algorithms to the
toolbox for deep RL problems. We also validate the effec-
tiveness of learning with GAs by comparing their perfor-
mance to that of random search. While the GA always out-
performs random search, interestingly we discovered that
in some Atari games random search outperforms power-

ar
X

iv
:1

71
2.

06
56

7v
2 

 [
cs

.N
E

] 
 4

 J
an

 2
01

8



ful deep RL algorithms (DQN on 4/13 games and A3C on
5/13) and ES (3/13), suggesting that these domains may
be easier than previously thought, at least for some algo-
rithms, and that local optima, saddle points, noisy gradi-
ent estimates, or some other force is impeding progress on
these problems for gradient-based methods. Note that al-
though deep neural networks often do not struggle with lo-
cal optima in supervised learning (Pascanu et al., 2014),
local optima remain an issue in RL because the reward sig-
nal may deceptively encourage the agent to perform actions
that prevent it from discovering the globally optimal behav-
ior.

Like ES and the deep RL algorithms, the GA has unique
benefits. One is that, through a new technique we intro-
duce, GAs turn out to be faster than ES due to their be-
ing even more amenable to parallelization. The GA and ES
are both faster than Q-learning and policy gradient methods
when substantial distributed computation is available (here,
720 CPU cores across dozens of machines). Another bene-
fit is that, via this same new technique, even multi-million-
parameter networks trained by GAs can be encoded with
very few (thousands of) bytes, yielding what we believe to
be a state-of-the-art compact encoding method.

In general, the unexpectedly competitive performance of
the GA (and even random search) suggests that the struc-
ture of the search space in some of these domains is not
always amenable to gradient-based search. That realiza-
tion can open up new research directions, focusing on when
and how to exploit the regions where a gradient-free search
might be more appropriate. It also expands the toolbox of
ideas and methods applicable for RL and may lead to new
kinds of hybrid algorithms.

2. Background
At a high level, an RL problem challenges an agent to max-
imize some notion of cumulative reward (e.g. total, or dis-
counted) for a given problem without supervision as to how
to accomplish that goal (Sutton & Barto, 1998). A host
of traditional RL algorithms perform well on small, tab-
ular state spaces (Sutton & Barto, 1998). However, scal-
ing to high-dimensional problems (e.g. learning to act di-
rectly from pixels) was challenging until RL algorithms
harnessed the representational power of deep neural net-
works (DNNs), thus catalyzing the field of deep reinforce-
ment learning (deep RL) (Mnih et al., 2015). Three broad
families of deep learning algorithms have shown promise
on RL problems so far: Q-learning methods such as DQN
(Mnih et al., 2015), policy gradient methods (Sehnke et al.,
2010) (e.g. A3C (Mnih et al., 2016), TRPO (Schulman
et al., 2015), PPO (Schulman et al., 2017)), and more re-
cently evolution strategies (ES) (Salimans et al., 2017).

Deep Q-learning algorithms approximate the optimal Q
function with DNNs, yielding policies that, for a given
state, choose the action that maximizes the Q-value
(Watkins & Dayan, 1992; Mnih et al., 2015; Hessel et al.,
2017). Policy gradient methods directly learn the parame-
ters of a DNN policy that outputs the probability of taking
each action in each state. A team from OpenAI recently
experimented with a simplified version of Natural Evolu-
tion Strategies (Wierstra et al., 2008), specifically one that
learns the mean of a distribution of parameters, but not its
variance. They found that this algorithm, which we will
refer to simply as evolution strategies (ES), is competitive
with DQN and A3C on difficult RL benchmark problems,
with much faster training times (i.e. faster wall-clock time
when many CPUs are available) due to better paralleliza-
tion (Salimans et al., 2017).

All of these methods can be considered gradient-based
methods, as they all calculate or approximate gradients in a
DNN and optimize those parameters via stochastic gradient
descent/ascent (although they do not require differentiating
through the reward function, such as a simulator). DQN
calculates the gradient of the loss of the DNN Q-value func-
tion approximator via backpropagation. Policy gradients
sample behaviors stochastically from the current policy and
then reinforce those that perform well via stochastic gradi-
ent ascent. ES does not calculate gradients analytically, but
instead approximates the gradient of the reward function in
the parameter space (Salimans et al., 2017; Wierstra et al.,
2008).

Here we test whether a truly gradient-free method – a sim-
ple GA – can perform well on challenging deep RL tasks.
We find GAs perform surprisingly well and thus can be
considered a new addition to the set of algorithms for deep
RL problems. We first describe our genetic algorithm and
other contemporary methods, and then report the experi-
mental results that led to our conclusions.

3. Methods
The next sections describe the methods used in this paper’s
experiments, namely, the GA that is applied across all ex-
periments, and the novelty search algorithm with which the
GA is combined in one set of experiments.

3.1. Genetic Algorithm

We purposefully test with an extremely simple GA to set a
baseline for how well gradient-free evolutionary algorithms
work for RL problems. We expect future work to reveal
that adding the legion of enhancements that exist for GAs
(Fogel & Stayton, 1994; Haupt & Haupt, 2004; Caponetto
et al., 2003; Clune et al., 2011; Mouret & Doncieux, 2009;
Lehman & Stanley, 2011b; Pugh et al., 2016; Stanley et al.,



2009; Stanley, 2007; Mouret & Clune, 2015) will improve
their performance on deep RL tasks.

A genetic algorithm (Holland, 1992; Eiben et al., 2003)
evolves a population P of N individuals (here, neural net-
work parameter vectors θ, often called genotypes). At ev-
ery generation, each θi is evaluated, producing a fitness
score (aka reward) F (θi). Our GA variant performs trun-
cation selection, wherein the top T individuals become the
parents of the next generation. To produce the next genera-
tion, the following process is repeated N − 1 times: A par-
ent is selected uniformly at random with replacement and is
mutated by applying additive Gaussian noise to the param-
eter vector: θ′ = θ + σε where ε ∼ N (0, I). The appro-
priate value of σ was determined empirically for each ex-
periment, as described in Supplementary Information (SI)
Table 3. The N th individual is an unmodified copy of the
best individual from the previous generation, a technique
called elitism. Historically, GAs often involve crossover
(i.e. combining parameters from multiple parents to pro-
duce an offspring), but for simplicity we did not include
it. The new population is then evaluated and the process
repeats for G generations or until some other stopping cri-
terion is met. Algorithm 1 outlines pseudo-code for this
approach.

We plan to release open source code and parameter config-
urations for all of our experiments as soon as possible. Hy-
perparameters were fixed for all Atari games, chosen once
at the outset before any experimentation based on our intu-
itions for which ones would work well for this architecture
size. The results on Atari would thus likely improve with
different hyperparameters. We did run an extensive hyper-
parameter search for the Humanoid Locomotion task. The
hyperparameters for all experiments are listed in SI.

Algorithm 1 Simple Genetic Algorithm

Input: mutation power σ, population size N , number of
selected individuals T , policy initialization routine φ.
for g = 1, 2...G generations do

for i = 1, ..., N in next generation’s population do
if g = 1 then
Pg
i = φ(N (0, I)) {initialize random DNN}

F g
i = F (Pg

i ) {assess its fitness}
else

if i = 1 then
Pg
i = Pg−1

i ;F g
i = F g−1

i {copy the elite}
else
k = uniformRandom(1, T ) {select parent}
Sample ε ∼ N (0, I)
Pg
i = Pg−1

k + σε {mutate parent}
F g
i = F (Pg

i ) {assess its fitness}
Sort Pg and F g with descending order by F g

Return: highest performing policy, Pg
1

GA implementations traditionally store each individual as
a parameter vector θ, but this approach scales poorly in
memory and network transmission costs with large popu-
lations and parameter vectors (e.g. deeper and wider neural
networks). We propose a novel method to store large pa-
rameter vectors compactly by representing each parameter
vector as an initialization seed plus the list of random seeds
that produce the series of mutations applied to θ. This inno-
vation was essential to enabling GAs to work at the scale of
deep neural networks, and we thus call it a Deep GA. This
technique also has the benefit of offering a state-of-the-art
compression method (Section 5).

One motivation for choosing ES versus Q-learning and pol-
icy gradient methods is its faster wall-clock time with dis-
tributed computation, owing to better parallelization (Sal-
imans et al., 2017). We found that the Deep GA not only
preserves this benefit, but slightly improves upon it. The
GA is faster than ES for two main reasons: (1) for every
generation, ES must calculate how to update its neural net-
work parameter vector θ. It does so via a weighted aver-
age across many (10,000 in Salimans et al. 2017) pseudo-
offspring (random θ perturbations) weighted by their fit-
ness. This averaging operation is slow for large neural net-
works and large numbers of pseudo-offspring (the latter is
required for healthy optimization), and is not required for
the Deep GA. (2) The ES requires require virtual batch nor-
malization to generate diverse policies amongst the pseudo-
offspring, which is necessary for accurate finite difference
approximation (Salimans et al., 2016). Virtual batch nor-
malization requires additional forward passes for a refer-
ence batch–a random set of observations chosen at the start
of training–to compute layer normalization statistics that
are then used in the same manner as batch normalization
(Ioffe & Szegedy, 2015). We found that the random GA pa-
rameter perturbations generate sufficiently diverse policies
without virtual batch normalization and thus avoid these
additional forward passes through the network.

3.2. Novelty Search

One benefit of training deep neural networks with simple
GAs is that doing so enables us to immediately take advan-
tage of algorithms previously developed in the neuroevolu-
tion community. As a demonstration, we experiment with
novelty search (NS) (Lehman & Stanley, 2011a), which
was designed for deceptive domains in which reward-based
optimization mechanisms converge to local optima. NS
avoids these local optima by ignoring the reward function
during evolution and instead rewarding agents for perform-
ing behaviors that have never been performed before (i.e.
that are novel). Surprisingly, it can often outperform algo-
rithms that utilize the reward signal, a result demonstrated
on maze navigation and simulated biped locomotion tasks
(Lehman & Stanley, 2011a). Here we apply NS to see



how it performs when combined with DNNs on a decep-
tive image-based RL problem (that we call the Image Hard
Maze). We refer to the GA that optimizes for novelty as
GA-NS.

NS requires a behavior characteristic (BC) that describes
the behavior of a policy BC(π) and a behavioral dis-
tance function between the BCs of any two policies:
dist(BC(πi), BC(πj)). After each generation, members
of the population have a probability p (here, 0.01) of hav-
ing their BC stored in an archive. The novelty of a policy
is defined as the average distance to the k (here, 25) near-
est neighbors (sorted by behavioral distance) in the pop-
ulation or archive. Novel individuals are thus determined
based on their behavioral distance to current or previously
seen individuals. The GA otherwise proceeds as normal,
substituting novelty for fitness (reward). For reporting and
plotting purposes only, we identify the individual with the
highest reward per generation. The algorithm is presented
in SI Sec. 8.

4. Experiments
Our experiments focus on the performance of the GA on
the same challenging problems that have validated the ef-
fectiveness of state-of-the-art deep RL algorithms and ES
(Salimans et al., 2017). They include learning to play Atari
directly from pixels (Mnih et al., 2015; Schulman et al.,
2017; Mnih et al., 2016; Bellemare et al., 2013) and a con-
tinuous control problem involving a simulated humanoid
robot learning to walk (Brockman et al., 2016; Schulman
et al., 2017; Salimans et al., 2017; Todorov et al., 2012). We
also tested on an Atari-scale maze domain that has a clear
local optimum (Image Hard Maze) to study how well these
algorithms avoid deception (Lehman & Stanley, 2011a).

For all our experiments we record the best agent found
in each of multiple, independent, randomly initialized GA
runs: 5 for the Atari domains, 5 for Humanoid Locomotion,
and 10 for the Image Hard Maze. During evolution, each
agent is evaluated n times (n=1 for Atari and Image Hard
Maze domains and n=5 for the Humanoid Locomotion do-
main) and fitness is the mean reward. However, because
false positives can arise with so few evaluations, for report-
ing (only) at every generation, the individual with highest
mean fitness (the elite) is re-evaluated 30 times to better
estimate its true mean fitness. The highest 30-evaluation
reward across all generations is considered the final reward
of an individual run. For each treatment, we then report
the median value across runs of those final per-run reward
values.

4.1. Atari

Training deep neural networks to play Atari – mapping di-
rectly from pixels to actions – was a celebrated feat that
arguably launched the deep RL era and expanded our un-
derstanding of the difficulty of RL domains that machine
learning could tackle (Mnih et al., 2015). Here we test how
the performance of DNNs evolved by a simple GA com-
pare to DNNs trained by the major families of deep RL al-
gorithms and ES. Due to limited computational resources,
we compare results on 13 Atari games. Some were chosen
because they are games on which ES performs well (Frost-
bite, Gravitar, Kangaroo, Venture, Zaxxon) or poorly (Ami-
dar, Enduro, Skiing, Seaquest) and the remaining games
were chosen from the ALE (Bellemare et al., 2013) set in
alphabetical order (Assault, Asterix, Asteroids, Atlantis).
To facilitate comparisons with results reported in Salimans
et al. (2017), we keep the number of game frames agents
experience over the course of a GA run constant (at one bil-
lion frames). The frame limit results in a differing number
of generations per independent GA run (SI Sec. Table 2), as
policies of different quality in different runs may see more
frames in some games (e.g. if the agent lives longer).

During training, each agent is evaluated on a full episode
(capped at 20k frames), which can include multiple lives,
and fitness is the final episode reward. The following are
identical to DQN (Mnih et al., 2015): (1) data preprocess-
ing, (2) network architecture, and (3) the stochastic envi-
ronment that starts each episode with up to 30 random, ini-
tial no-op operations. We use the larger DQN architecture
from Mnih et al. (2015) consisting of 3 convolutional lay-
ers with 32, 64, and 64 channels followed by a hidden layer
with 512 units. The convolutional layers use 8 × 8, 4 × 4,
and 3 × 3 filters with strides of 4, 2, and 1, respectively.
All hidden layers were followed by a rectifier nonlinearity
(ReLU). The network contains over 4M parameters.

Comparing our results with those from other algorithms
fairly is extremely difficult, as such comparisons are in-
herently apples and oranges in many different ways. One
important consideration is whether agents are evaluated on
random starts (a random number of no-op actions), which
is the regime they are trained on, or starts randomly sam-
pled from human play, which tests for generalization (Nair
et al., 2015). Because we do not have a database of hu-
man starts to sample from, our agents are evaluated with
random starts. Where possible, we compare our results to
those for other algorithms for which such random start re-
sults are available. That is true for DQN and ES, but not
true for A3C, where we had to include results on human
starts.

We also attempt to control for the number of frames seen
during training, but because DQN is far slower to run, we
present results from the literature that train on fewer frames



(200M, which requires 7-10 days of computation vs. hours
of computation needed for ES and the GA to train on 1B
frames). There are many variants of DQN that we could
compare to, including the Rainbow (Hessel et al., 2017) al-
gorithm that combines many different recent improvements
to DQN (Van Hasselt et al., 2016; Wang et al., 2015; Schaul
et al., 2015; Sutton & Barto, 1998; Bellemare et al., 2017;
Fortunato et al., 2017). However, we choose to compare
the GA to the original, vanilla DQN algorithm, partly be-
cause we also introduce a vanilla GA, without the many
modifications and improvements that have been previously
developed (Haupt & Haupt, 2004).

In what will likely be a surprise to many, the simple GA
is able to train deep neural networks to play many Atari
games roughly as well as DQN, A3C, and ES (Table 1).
Among the 13 games we tried, DQN, ES, and the GA
each produced the best score on 3 games, while A3C pro-
duced the best score on 4. On Skiing, the GA produced
a score higher than any other algorithm to date that we
are aware of, including all the DQN variants in the Rain-
bow DQN paper (Hessel et al., 2017). On some games,
the GA performance advantage over DQN, A3C, and ES is
considerable (e.g. Frostbite, Venture, Skiing). Videos of
policies evolved by the GA can be viewed here: https:
//goo.gl/QBHDJ9. In a head-to-head comparisons on
these 13 games, the GA performs better on 6 vs. ES, 6 vs.
A3C, and 5 vs. DQN.

There are also many games in which the GA performs
worse, continuing a theme in deep RL where different fam-
ilies of algorithms perform differently across different do-
mains (Salimans et al., 2017). We note that all such com-
parisons are preliminary because we did not have the com-
putational resources to gather sufficient sample sizes (and
test on enough games) to see if the algorithms are signif-
icantly different; instead the key takeaway is that they all
tend to perform roughly similarly in that each does well on
different games.

Because performance did not plateau in the GA runs, we
test whether the GA improves further given additional com-
putation. We thus run the GA four times longer (4B frames)
and in all games but one, its score improves (Table 1). With
these post-4B-frame scores, the GA outperforms each of
the other algorithms (A3C, ES, and DQN) on 7 of the 13
games in head-to-head comparisons. In most games, the
GA’s performance still has not converged at 4B frames,
leaving open the question of to how well the GA will ul-
timately perform when run even longer. To our knowledge,
this 4M+ parameter neural network is the largest neural net-
work ever evolved with a simple GA.

One remarkable fact is how quickly the GA finds high-
performing individuals. Because we employ a large popu-
lation size (5,000), each run lasts relatively few generations

(min 72, max 409, SI Sec. Table 2). In fact, in many games,
the GA finds a solution better than DQN in only one or tens
of generations! Specifically, the median GA performance
is higher than the final DQN performance in 1, 1, 1, 29,
and 58 generations for Frostbite, Venture, Skiing, Gravitar,
and Kangaroo, respectively. Similar results hold for ES,
where 1, 1, 3, and 14 generations of the GA were needed
to obtain higher performance than ES for Frostbite, Skiing,
Amidar, and Venture, respectively. The number of gener-
ations required to beat A3C were 1, 1, 1, 1, 1, 16, and 52
for Enduro, Frostbite, Kangaroo, Skiing, Venture, Gravitar,
and Amidar, respectively.

Each generation, the GA tends to make small-magnitude
changes to the parameter vector controlled by σ (see Meth-
ods). That the GA outperforms DQN, A3C, and ES in so
few generations – especially when it does so in the first
generation (which is before a round of selection) – suggests
that many high-quality policies exist near the origin (to be
precise, in or near the region in which the random initializa-
tion function generates policies). That raises the question:
is the GA doing anything more than random search?

To answer this question, we evaluate many policies ran-
domly generated by the GA’s initialization function φ and
report the best score. We gave random search approx-
imately the same amount of frames and computation as
the GA and compared their performance (Table 1). In ev-
ery case, the GA significantly outperformed random search
(Fig. 1, p < 0.05, this and all future p values are via a
Wilcoxon rank-sum test). The improved performance sug-
gests the GA is performing healthy optimization over gen-
erations.

Surprisingly, given how celebrated and impressive DQN,
ES and A3C are, random search actually outperforms DQN
on 4 out of 13 games (Asteroids, Frostbite, Skiing, & Ven-
ture), ES on 3 (Amidar, Frostbite, & Skiing), and A3C on
5 (Enduro, Frostbite, Kangaroo, Skiing, & Venture). Inter-
estingly, some of these policies produced by random search
are not trivial, degenerate policies. Instead, they appear
quite sophisticated. Consider the following example from
the game Frostbite, which requires an agent to perform a
long sequence of jumps up and down rows of icebergs mov-
ing in different directions (while avoiding enemies and op-
tionally collecting food) to build an igloo brick by brick
(Fig. 2). Only after the igloo is built can the agent en-
ter the igloo to receive a large payoff. Over its first two
lives, a policy found by random search completes a series
of 17 actions, jumping down 4 rows of icebergs moving in
different directions (while avoiding enemies) and back up
again three times to construct an igloo. Then, only once
the igloo is built, the agent immediately moves towards
it and enters it, at which point it gets a large reward. It
then repeats the entire process on a harder level, this time

https://goo.gl/QBHDJ9
https://goo.gl/QBHDJ9


DQN Evolution Strategies Random Search GA GA A3C
Frames, Time 200M, ∼7-10d 1B, ∼ 1h 1B, ∼ 1h 1B, ∼ 1h 4B, ∼ 4h 1.28B, 4d
Forward Passes 450M 250M 250M 250M 1B 960M
Backward Passes 400M 0 0 0 0 640M
Operations 1.25B U 250M U 250M U 250M U 1B U 2.24B U

Amidar 978 112 151 216 294 264
Assault 4,280 1,674 642 819 1,006 5,475
Asterix 4,359 1,440 1,175 1,885 2,392 22,140
Asteroids 1,365 1,562 1,404 2,056 2,056 4,475
Atlantis 279,987 1,267,410 45,257 79,793 125,883 911,091
Enduro 729 95 32 39 50 -82
Frostbite 797 370 1,379 4,801 5,623 191
Gravitar 473 805 290 462 637 304
Kangaroo 7,259 11,200 1,773 8,667 10,920 94
Seaquest 5,861 1,390 559 807 1,241 2,355
Skiing -13,062 -15,442 -8,816 -6,995 -6,522 -10,911
Venture 163 760 547 810 1,093 23
Zaxxon 5,363 6,380 2,943 5,183 6,827 24,622

Table 1. The Atari results reveal a simple genetic algorithm is competitive with Q-learning (DQN), policy gradients (A3C), and
evolution strategies (ES). Shown are game scores (higher is better). Comparing performance between algorithms is inherently chal-
lenging (see main text), but we attempt to facilitate comparisons by showing estimates for the amount of computation (operations, the
sum of forward and backward neural network passes), data efficiency (the number of game frames from training episodes), and how
long in wall-clock time the algorithm takes to run. The GA, DQN, and ES, perform best on 3 games each, while A3C wins on 4 games.
Surprisingly, random search often finds policies superior to those of DQN, A3C, and ES (see text for discussion). Note the dramatic
differences in the speeds of the algorithm, which are much faster for the GA and ES, and data efficiency, which favors DQN. The scores
for DQN are from Hessel et al. (2017) while those for A3C and ES are from Salimans et al. (2017). For A3C, DQN, and ES, we cannot
provide error bars because they were not reported in the original literature; GA and random search error bars are visualized in (Fig. 1).
The wall-clock times are approximate because they depend on a variety of hard-to-control-for factors. We found the GA runs slightly
faster than ES on average.

also gathering food and thus earning bonus points (video:
https://youtu.be/CGHgENV1hII). That policy re-
sulted in a very high score of 3,620 in less than 1 hour of
random search, vs. an average score of 797 produced by
DQN after 7-10 days of optimization. One may think that
random search found a lucky open loop sequence of ac-
tions overfit to that particular stochastic environment. Re-
markably, we found that this policy actually generalizes to
other initial conditions too, achieving a median score of
3,170 (with 95% bootstrapped median confidence intervals
of 2,580 - 3,170) on 200 different test environments (each
with up to 30 random initial no-ops, a standard testing pro-
cedure (Hessel et al., 2017; Mnih et al., 2015)).

These examples and the success of RS versus DQN, A3C,
and ES suggest that many Atari games that seem hard based
on the low performance of leading deep RL algorithms may
not be as hard as we think, and instead that these algorithms
for some reason are performing extremely poorly on tasks
that are actually quite easy. They further suggest that some-
times the best search strategy is not to follow the gradient,
but instead to conduct a dense search in a local neighbor-
hood and select the best point found, a subject we return to

in the discussion (Sec. 6).

4.2. Humanoid Locomotion

We next test the GA on a challenging continuous control
problem, specifically humanoid locomotion (Fig. 3a). We
test with the MuJoCo Humanoid-v1 environment in Ope-
nAI Gym (Todorov et al., 2012; Brockman et al., 2016),
which involves a simulated humanoid robot learning to
walk. Solving this problem has validated modern, pow-
erful algorithms such as A3C (Mnih et al., 2016), TRPO
(Schulman et al., 2015), and ES (Salimans et al., 2017).

This problem involves mapping a vector of 376 scalars that
describe the state of the humanoid (e.g. its position, ve-
locity, angle) to 17 joint torques. The robot receives a
scalar reward that is a combination of four components
each timestep. It gets positive reward for standing and its
velocity in the positive x direction, and negative reward the
more energy it expends and for how hard it impacts the
ground. These four terms are summed over every timestep
in an episode to calculate the total reward.

To stabilize training, we normalize each dimension of the

https://youtu.be/CGHgENV1hII


Figure 1. GA and random search performance across generations on Atari 2600 games. The GA significantly outperforms random
search in every game (p < 0.05). The performance of the GA and random search to DQN, A3C, and ES depends on the game. We plot
final scores (as dashed lines) for DQN, A3C, and ES because we do not have their performance values across training and because they
trained on different numbers of game frames (see Table 1). For GA and RS, we report the median and 95% bootstrapped confidence
intervals of the median across 5 experiments of the best mean evaluation score (over 30 stochastic rollouts) seen up to that point in
training.

input space separately by subtracting the mean and dividing
by the variance of data for that input gathered in the domain
by 10,000 random policies. We also applied annealing to
the mutation power σ, decreasing it to 0.001 after 1,000
generations, which resulted in a small performance boost
at the end of training.

The architecture has two 256-unit hidden layers with tanh
activation functions. This architecture is the one in the
configuration file included in the source code released by
Salimans et al. (2017). The architecture described in their
paper is similar, but smaller, having 64 neurons per layer
(Salimans et al., 2017). Although relatively shallow by
deep learning standards, and much smaller than the Atari
DNNs, this architecture still contains ∼167k parameters,
which is orders of magnitude greater than the largest neu-
ral networks evolved for robotics tasks that we are aware

of, which contained 1,560 (Huizinga et al., 2016) and be-
fore that 800 parameters (Clune et al., 2011). Many as-
sumed evolution would fail at larger scales (e.g. networks
with hundreds of thousands or millions of weights, as in
this paper). Previous work has called the problem solved
with a score around 6,000 (Salimans et al., 2017). The GA
achieves a median above that level after ∼1,500 genera-
tions. However, it requires far more computation than ES
to do so (ES requires ∼100 generations for median per-
formance to surpass the 6,000 threshold). It is not clear
why the GA requires so much more computation and hy-
perparameter tuning on this problem, especially given how
quickly the GA found high-performing policies in the Atari
domain. While the GA needs far more computation in this
domain, it is interesting nevertheless that it does eventu-
ally solve it by producing an agent that can walk and score
over 6,000. Considering its very fast discovery of high-



Figure 2. Example of high-performing individual on Frostbite
found through random search. See text for a description of the
behavior of this policy. Its final score is 3,620 in this episode,
which is higher than the scores produced by DQN, A3C and ES,
although not as high as the score found by the GA (Table 1).

(a) (b)

Figure 3. Two different test domains. Left: The Human Loco-
motion domain. The humanoid robot has to learn to walk effi-
ciently. Shown is an example policy evolved with a GA. Right:
The Image Hard Maze domain. A small wheeled robot must nav-
igate to the goal with this bird’s-eye view as pixel inputs. Shown
is an example image frame as seen by the robot’s neural network.
The text annotations and arrows are not visible to the robot. The
robot starts in the bottom left corner facing right.

performing solutions in Atari, clearly the GA’s advantage
versus other methods depends on the domain, and under-
standing this dependence is an important target for future
research.

4.3. Image Hard Maze

The Hard Maze domain is a staple in the neuroevolution
community, where it demonstrates the problem of local op-
tima (aka deception) in reinforcement learning (Lehman &
Stanley, 2011a). In it, a robot receives more reward the
closer it gets to the goal. Specifically, a single reward is
provided at the end of an episode consisting of the nega-
tive of the straight-line distance between the final position
of the agent and the goal. The problem is deceptive be-
cause greedily getting closer to the goal leads an agent to
permanently get stuck in one of the deceptive traps in the
maze (Fig. 3b). Optimization algorithms that do not con-
duct sufficient exploration suffer this fate. Novelty search
(NS) solves this problem easily because it ignores the re-
ward entirely and encourages agents to visit new places,
which ultimately leads to some reaching the goal (Lehman

& Stanley, 2011a).

The original version of this problem involves only a few
inputs (radar sensors to sense walls) and two continuous
outputs, one that controls speed (forward or backward) and
another that controls rotation, making it solvable by small
neural networks (on the order of tens of connections). Be-
cause here we want to demonstrate the benefits of NS at
the scale of deep neural networks, we introduce a new ver-
sion of the domain called Image Hard Maze. Like many
Atari games, it shows a bird’s-eye view of the world to
the agent in the form of an 84 × 84 pixel image. This
change makes the problem easier in some ways (e.g. now
it is fully observable), but harder because it is much higher-
dimensional: the neural network must learn to process this
pixel input and take actions. For temporal context, the cur-
rent frame and previous three frames are all input at each
timestep, following Mnih et al. (2015). An example frame
is shown in Fig. 3b. The outputs remain the same as in the
original problem formulation.

Following previous work in the original Hard Maze
(Lehman & Stanley, 2011a), the BC is the (x, y) position
of the robot at the end of the episode (400 timesteps), and
the behavioral distance function is the squared Euclidean
distance between these final (x, y) positions. Both the en-
vironment and the agent are deterministic. The simple sim-
ulator rejects forward or backward motion that results in
the robot penetrating walls (i.e. the position of the robot
remains unchanged from the previous timestep in such
cases); these dynamics prohibit a robot from sliding along
a wall, although rotational motor commands still have their
usual effect in such situations.

We confirm that the results that held for small neural net-
works on the original, radar-based version of this task also
hold for the high-dimensional, visual version of this task
with deep neural networks. With a 4M+ parameter net-
work processing pixels, the GA-based novelty search (GA-
NS) is able to solve the task by finding the goal (Fig. 4).
The GA optimizes for reward only and, as expected, gets
stuck in the local optima of Trap 2 (Fig. 5) and thus fails
to solve the problem (Fig. 4), significantly underperform-
ing GA-NS (p < 0.001). These results thus confirm that
intuitions gained in small neural networks about local op-
tima in reward functions hold for much larger, deep neural
networks. While local optima may not be a problem with
deep neural networks in supervised learning where the cor-
rect answer is always given (Pascanu et al., 2014), the same
is not true in reinforcement learning problems with sparse
or deceptive rewards. Our results confirm that we are able
to use exploration methods such as novelty search to solve
this sort of deception, even in high-dimensional problems
such as those involving learning directly from pixels.

This is the largest neural network optimized by novelty



search to date by three orders of magnitude. In an com-
panion paper (Conti et al., 2017), we also demonstrate a
similar finding, by hybridizing novelty search with ES to
create NS-ES, and show that it too can help deep neural net-
works avoid deception in challenging RL benchmark do-
mains. We hope these results encourage more investigation
into combining deep neural networks with novelty search
and similar methods, such as quality diversity algorithms,
which seek to collect a set of high-performing, yet interest-
ingly different policies (Lehman & Stanley, 2011b; Cully
et al., 2015; Pugh et al., 2016).

Figure 4. Image Hard Maze results reveal that novelty search
can train deep neural networks to avoid local optima that
stymie other algorithms. The GA, which solely optimizes for
reward and has no incentive to explore, gets stuck on the local
optimum of Trap 2 (the goal and traps are visualized in Fig. 3b).
The GA optimizing for novelty (GA-NS) is encouraged to ignore
reward and explore the whole map, enabling it to eventually find
the goal. ES performs even worse than the GA, as discussed in the
main text. DQN and A2C also fail to solve this task. For ES, the
performance of the mean θ policy each iteration is plotted. For
GA and GA-NS, the performance of the highest-scoring individ-
ual per generation is plotted. Because DQN and A2C do not have
the same number of evaluations per iteration as the evolutionary
algorithms, we plot their final median reward as dashed lines. Fig.
5 shows the behavior of these algorithms during training.

As expected, ES also fails to solve the task because it fo-
cuses solely on maximizing reward (Fig. 5). It is surpris-
ing, however, that it significantly underperforms the GA
(p < 0.001). In 8 of 10 runs it gets stuck near Trap 1,
not because of deception, but instead seemingly because
it cannot reliably learn to pass through a small bottleneck
corridor. This phenomenon has never been observed with
population-based GAs, suggesting the ES (at least with
these hyperparameters) is qualitatively different than GAs
in this regard (Lehman et al., 2017). We believe this differ-

ence occurs because ES optimizes for the average reward
of the population sampled from a probability distribution.
Even if the maximum fitness of agents sampled from that
distribution is higher further along a corridor, ES will not
move in that direction if the average population is lower
(e.g. if other policies sampled from the distribution crash
into the walls, or experience other low-reward fates). In a
companion paper, we investigate this interesting difference
between ES and GAs (Lehman et al., 2017). Note, how-
ever, that even when ES moved through this bottleneck (2
out of 10 runs), because it is solely reward-driven, it got
stuck in Trap 2.

We also test Q-learning (DQN) and policy gradients on this
problem. We did not have source code for A3C, but were
able to obtain source code for A2C, which has similar per-
formance (Wu et al., 2017): the only difference (explaining
why it has one fewer ‘A’) is that it is synchronous instead
of asynchronous. For these experiments we modified the
rewards of the domain to step-by-step rewards (the nega-
tive change in distance to goal since the last time-step), but
for plotting purposes, we record the final distance to the
goal. Having per-step rewards is more standard for these
algorithms and gives them more information, but does not
remove the deception. Because DQN requires discrete out-
puts, for it we discretize each of the two continuous outputs
into to five equally sized bins. Because it needs to be able
to specify all possible output combinations, it thus learns
52 = 25 Q-values.

Also as expected, DQN and A2C fail to solve this problem
(Fig. 4, Fig. 5). Their default exploration mechanisms are
not enough to find the global optimum given the deceptive
reward function in this domain. DQN is drawn into the
expected Trap 2. For reasons that are not clear to us, even
though A2C visits Trap 2 frequently early in training, it
converges on getting stuck in a different part of the maze.

Overall the results for the Image Hard Maze domain con-
firm that the Deep GA allows algorithms developed for
small-scale neural networks to operate at DNN scale, and
can thus be harnessed on hard, high-dimensional problems
that require DNNs. In future work, it will be interest-
ing to test the benefits that novelty search provides when
combined with a GA on more domains, including Atari
and robotics domains. More importantly, our demonstra-
tion suggests that other algorithms that enhance GAs can
now be combined with DNNs. Perhaps most promising
are those that combine a notion of diversity (e.g. nov-
elty) and quality (i.e. being high performing) (Mouret &
Clune, 2015; Mouret & Doncieux, 2009; Lehman & Stan-
ley, 2011b; Cully et al., 2015; Pugh et al., 2016).



Figure 5. How different algorithms explore the deceptive Image Hard Maze over time. Traditional reward-maximization algorithms
do not exhibit sufficient exploration to avoid the local optimum (going up). In contrast, a GA optimizing for novelty only (GA-NS)
explores the entire environment and ultimately finds the goal. For the evolutionary algorithms (GA-NS, GA, ES), blue crosses represent
the population (pseudo-offspring for ES), red crosses represent the top T GA offspring, orange dots represent the final positions of GA
elites and the current mean ES policy, and the black crosses are entries in the GA-NS archive. All 3 evolutionary algorithms had the same
number of evaluations, but ES and the GA have many overlapping points because they revisit locations due to poor exploration, giving
the illusion of fewer evaluations. For DQN and A2C, we plot the end-of-episode position of the agent for each of the 20K episodes prior
to the checkpoint listed above the plot.

5. Compact network encoding
As mentioned before, the Deep GA method enables com-
pactly storing DNNs by representing them as the series of
mutations required to reconstruct their parameters. This
technique is advantageous because the size of the com-
pressed parameters increases with the number of genera-
tions instead of with the size of the network (the latter is
often much larger than the former). For example, as previ-
ously discussed, we were able to evolve competitive Atari-
playing agents in some games in as little as tens of gen-
erations, enabling us to compress the representation of a
4M+ parameter neural network to just thousands of bytes
(a factor of 10,000-fold smaller). As far as we know, this
represents the state of the art in encoding large networks
compactly. However, it does not count as a general net-
work compression technique because it cannot take an ar-
bitrary network and compress it, and instead only works for

networks evolved with a GA. Of course, one could harness
this approach to create a general compression technique by
evolving a network to match a target network, which is an
interesting area for future research.

The compressibility of a network is entirely dependent on
the number of mutations needed to achieve a certain per-
formance. For Humanoid Locomotion, this translates to
encoding 160,000 parameters in just 6kB (27-fold com-
pression). This amount was the largest number of muta-
tions needed for any of the networks we evolved. All of the
solutions on the Image Hard Maze domain could be repre-
sented with 1kB or less (16,000 times smaller). The Atari
compression benefits change depending on the game due
variance in generations between experiments (Table 2), but
are always substantial: all Atari final networks were com-
pressible to 300-2,000 bytes (8,000-50,000-fold compres-
sion). It does, of course, require computation to reconstruct



the DNN weight vector from this compact encoding.

6. Discussion
The surprising success of the GA in domains thought to
require at least some degree of gradient estimation sug-
gests some heretofore under-appreciated aspects of high-
dimensional search spaces. The random search results
suggest that densely sampling in a region around the ori-
gin is sufficient in some cases to find far better solutions
than those found by state-of-the-art, gradient-based meth-
ods even with far more computation or wall-clock time,
suggesting that gradients do not point to these solutions, or
that other optimization issues interfere with finding them,
such as saddle points or noisy gradient estimates. The GA
results further suggest that sampling in the region around
good solutions is often sufficient to find even better solu-
tions, and that a sequence of such discoveries is possible in
many challenging domains. That result in turn implies that
the distribution of solutions of increasing quality is unex-
pectedly dense, and that you do not need to follow a gradi-
ent to find them.

Another, non-mutually exclusive hypothesis, is that GAs
have improved performance due to temporally extended ex-
ploration (Osband et al., 2016). That means they explore
consistently since all actions in an episode are a function of
the same set of mutated parameters, which has been shown
to improve exploration (Plappert et al., 2017). Such consis-
tency helps with exploration for two reasons, (1) an agent
takes the same action (or has the same distribution over ac-
tions) each time it visits the same state, which makes it eas-
ier to learn whether the policy in that state is advantageous,
and (2) the agent is also more likely to have correlated ac-
tions across states (e.g. always go up) because mutations
to its internal representations can affect the actions taken in
many states similarly.

Perhaps more interesting is the result that sometimes it is
actually worse to follow the gradient than sample locally
in the parameter space for better solutions. This scenario
probably does not hold in all domains, or even in all the
regions of a domain where it sometimes holds, but that it
holds at all expands our conceptual understanding of the
viability of different kinds of search operators. A reason
GA might outperform gradient-based methods is if local
optima are present, as it can jump over them in the parame-
ter space, whereas a gradient method cannot (without addi-
tional optimization tricks such as momentum, although we
note that ES utilized the modern ADAM optimizer in these
experiments (Kingma & Ba, 2014), which includes mo-
mentum). One unknown question is whether GA-style lo-
cal, gradient-free search is better early on in the search pro-
cess, but switching to a gradient-based search later allows
further progress that would be impossible, or prohibitively

computationally expensive, for a GA to make. Another un-
known question is the promise of simultaneously hybridiz-
ing GA methods with modern algorithms for deep RL, such
as Q-learning, policy gradients, or evolution strategies.

We emphasize that we still know very little about the ul-
timate promise of GAs versus competing algorithms for
training deep neural networks on reinforcement learning
problems. On the Atari domain, we did not perform hy-
perparameter search, so the best GA results could be much
higher as it is well known that hyperparameters can have
massive effects on the performance of optimization algo-
rithms, including GAs (Haupt & Haupt, 2004; Clune et al.,
2008). We also have not yet seen the algorithm con-
verge in most of these domains, so its ceiling is unknown.
Additionally, here we used an extremely simple GA, but
many techniques have been invented to improve GA perfor-
mance (Eiben et al., 2003; Haupt & Haupt, 2004), includ-
ing crossover (Holland, 1992; Deb & Myburgh, 2016), in-
direct encoding (Stanley, 2007; Stanley et al., 2009; Clune
et al., 2011), and encouraging diversity (Lehman & Stan-
ley, 2011a; Mouret & Clune, 2015; Pugh et al., 2016) (a
subject we do take an initial look at here with our nov-
elty search experiments), just to name a few. Moreover,
many techniques have been invented that dramatically im-
prove the training of DNNs with backpropagation, such as
residual networks (He et al., 2015), virtual batch normal-
ization (Salimans et al., 2016), SELU or RELU activation
functions (Krizhevsky et al., 2012; Klambauer et al., 2017),
LSTMs or GRUs (Hochreiter & Schmidhuber, 1997; Cho
et al., 2014), regularization (Hoerl & Kennard, 1970),
dropout (Srivastava et al., 2014), and annealing learning
rate schedules (Robbins & Monro, 1951). We hypothesize
that many of these techniques will also improve neuroevo-
lution for large DNNs, a subject we are currently investi-
gating.

It is also possible that some of these enhancements may
remedy the poor data efficiency the GA showed on the Hu-
manoid Locomotion problem. For example, indirect en-
coding, which allows genomic parameters to affect multi-
ple weights in the final neural network (in a way similar
to convolution’s tied weights, but with far more flexibil-
ity), has been shown to dramatically improve performance
and data efficiency when evolving robot gaits (Clune et al.,
2011). Those results were found with the HyperNEAT al-
gorithm (Stanley et al., 2009), which has an indirect en-
coding that abstracts the power of developmental biology
(Stanley, 2007), and is a particularly promising direction
for Humanoid Locomotion and Atari that we will investi-
gate in future work. More generally, it will be interesting
to learn on which domains Deep GA tends to perform well
or poorly and understand why. For example, GAs could
perform well in other non-differentiable domains, such as
architecture search (Liu et al., 2017; Miikkulainen et al.,



2017) and for training limited precision (including binary)
neural networks.

Finally, it is worth noting that the GA (like ES before it)
benefits greatly from large-scale parallel computation in
these studies. In our experiments, each GA run was dis-
tributed across hundreds or thousands of CPUs, depending
on available computation. That the availability of such re-
sources so significantly changes what is possible with such
a simple algorithm motivates further investment in large-
scale parallel computing infrastructure. While the depen-
dence of the results on hundreds or thousands of CPUs in
parallel could be viewed as an obstacle for some, it could
also be interpreted as an exciting opportunity: as prices
continue to decline and the availability of such resources
becomes more mainstream, more and more researchers
will have the opportunity to investigate an entirely new
paradigm of opportunities, not unlike the transformation
GPUs have enabled in deep learning.

7. Conclusion
Our work introduces a Deep GA, which involves a sim-
ple parallelization trick that allows us to train deep neu-
ral networks with GAs. We then document that GAs are
surprisingly competitive with popular algorithms for deep
reinforcement learning problems, such as DQN, A3C, and
ES, especially in the challenging Atari domain. We also
showed that interesting algorithms developed in the neu-
roevolution community can now immediately be tested
with deep neural networks, by showing that a Deep GA-
powered novelty search can solve a deceptive Atari-scale
game. It will be interesting to see future research investi-
gate the potential and limits of GAs, especially when com-
bined with other techniques known to improve GA perfor-
mance. More generally, our results continue the story –
started by backprop and extended with ES – that old, sim-
ple algorithms plus modern amounts of computation can
perform amazingly well. That raises the question of what
other old algorithms should be revisited.

Acknowledgements
We thank all of the members of Uber AI Labs for help-
ful suggestions throughout the course of this work, in par-
ticular Zoubin Ghahramani, Peter Dayan, Noah Goodman,
Thomas Miconi, and Theofanis Karaletsos. We also thank
Justin Pinkul, Mike Deats, Cody Yancey, and the entire
OpusStack Team at Uber for providing resources and tech-
nical support.

References
Bellemare, Marc G, Naddaf, Yavar, Veness, Joel, and

Bowling, Michael. The arcade learning environment:
An evaluation platform for general agents. J. Artif. In-
tell. Res.(JAIR), 47:253–279, 2013.

Bellemare, Marc G, Dabney, Will, and Munos, Rémi.
A distributional perspective on reinforcement learning.
arXiv preprint arXiv:1707.06887, 2017.

Brockman, Greg, Cheung, Vicki, Pettersson, Ludwig,
Schneider, Jonas, Schulman, John, Tang, Jie, and
Zaremba, Wojciech. OpenAI gym, 2016.

Caponetto, Riccardo, Fortuna, Luigi, Fazzino, Stefano,
and Xibilia, Maria Gabriella. Chaotic sequences to
improve the performance of evolutionary algorithms.
IEEE transactions on evolutionary computation, 7(3):
289–304, 2003.

Cho, Kyunghyun, Van Merriënboer, Bart, Bahdanau,
Dzmitry, and Bengio, Yoshua. On the properties of neu-
ral machine translation: Encoder-decoder approaches.
arXiv preprint arXiv:1409.1259, 2014.

Clune, Jeff, Misevic, Dusan, Ofria, Charles, Lenski,
Richard E, Elena, Santiago F, and Sanjuán, Rafael. Nat-
ural selection fails to optimize mutation rates for long-
term adaptation on rugged fitness landscapes. PLoS
Computational Biology, 4(9):e1000187, 2008.

Clune, Jeff, Stanley, Kenneth O., Pennock, Robert T., and
Ofria, Charles. On the performance of indirect encoding
across the continuum of regularity. IEEE Transactions
on Evolutionary Computation, 2011.

Conti, Edoardo, Madhavan, Vashisht, Petroski Such, Fe-
lipe, Lehman, Joel, Stanley, Kenneth O., and Clune,
Jeff. Improving exploration in evolution strategies for
deep reinforcement learning via a population of novelty-
seeking agents. arXiv preprint to appear, 2017.

Cully, A., Clune, J., Tarapore, D., and Mouret, J.-B. Robots
that can adapt like animals. Nature, 521:503–507, 2015.
doi: 10.1038/nature14422.

Deb, Kalyanmoy and Myburgh, Christie. Breaking the
billion-variable barrier in real-world optimization using
a customized evolutionary algorithm. In GECCO ’16,
pp. 653–660. ACM, 2016.

Dhariwal, Prafulla, Hesse, Christopher, Plappert, Matthias,
Radford, Alec, Schulman, John, Sidor, Szymon, and Wu,
Yuhuai. Openai baselines. https://github.com/
openai/baselines, 2017.

Eiben, Agoston E, Smith, James E, et al. Introduction to
evolutionary computing, volume 53. Springer, 2003.

https://github.com/openai/baselines
https://github.com/openai/baselines


Fogel, David B and Stayton, Lauren C. On the effective-
ness of crossover in simulated evolutionary optimization.
BioSystems, 32(3):171–182, 1994.

Fortunato, Meire, Azar, Mohammad Gheshlaghi, Piot, Bi-
lal, Menick, Jacob, Osband, Ian, Graves, Alex, Mnih,
Vlad, Munos, Remi, Hassabis, Demis, Pietquin, Olivier,
et al. Noisy networks for exploration. arXiv preprint
arXiv:1706.10295, 2017.

Glorot, Xavier and Bengio, Yoshua. Understanding the dif-
ficulty of training deep feedforward neural networks. In
ICAI, pp. 249–256, 2010.

Haupt, Randy L and Haupt, Sue Ellen. Practical genetic
algorithms. John Wiley & Sons, 2004.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Deep residual learning for image recognition. arXiv
preprint arXiv:1512.03385, 2015.

Hessel, Matteo, Modayil, Joseph, Van Hasselt, Hado,
Schaul, Tom, Ostrovski, Georg, Dabney, Will, Horgan,
Dan, Piot, Bilal, Azar, Mohammad, and Silver, David.
Rainbow: Combining improvements in deep reinforce-
ment learning. arXiv preprint arXiv:1710.02298, 2017.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

Hoerl, Arthur E and Kennard, Robert W. Ridge regression:
Biased estimation for nonorthogonal problems. Techno-
metrics, 12(1):55–67, 1970.

Holland, John H. Genetic algorithms. Scientific american,
267(1):66–73, 1992.

Huizinga, Joost, Mouret, Jean-Baptiste, and Clune, Jeff.
Does aligning phenotypic and genotypic modularity im-
prove the evolution of neural networks? In GECCO ’16,
pp. 125–132. ACM, 2016.

Ioffe, Sergey and Szegedy, Christian. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. ICML’15, pp. 448–456. JMLR.org, 2015.

Kingma, Diederik and Ba, Jimmy. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Klambauer, Günter, Unterthiner, Thomas, Mayr, Andreas,
and Hochreiter, Sepp. Self-normalizing neural networks.
arXiv preprint arXiv:1706.02515, 2017.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.
Imagenet classification with deep convolutional neural
networks. In NIPS, pp. 1097–1105, 2012.

Lehman, Joel and Stanley, Kenneth O. Abandoning ob-
jectives: Evolution through the search for novelty alone.
Evolutionary Computation, 19(2):189–223, 2011a.

Lehman, Joel and Stanley, Kenneth O. Evolving a di-
versity of virtual creatures through novelty search and
local competition. In GECCO ’11: Proceedings of
the 13th annual conference on Genetic and evolution-
ary computation, pp. 211–218, Dublin, Ireland, 12-16
July 2011b. ACM. ISBN 978-1-4503-0557-0. doi:
doi:10.1145/2001576.2001606.

Lehman, Joel, Chen, Jay, Clune, Jeff, and Stanley, Ken-
neth O. ES is more than just a traditional finite-difference
approximator. arXiv preprint to appear, 2017.

Liu, Hanxiao, Simonyan, Karen, Vinyals, Oriol, Fernando,
Chrisantha, and Kavukcuoglu, Koray. Hierarchical rep-
resentations for efficient architecture search. arXiv
preprint arXiv:1711.00436, 2017.

Miikkulainen, Risto, Liang, Jason, Meyerson, Elliot,
Rawal, Aditya, Fink, Dan, Francon, Olivier, Raju,
Bala, Navruzyan, Arshak, Duffy, Nigel, and Hodjat,
Babak. Evolving deep neural networks. arXiv preprint
arXiv:1703.00548, 2017.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David,
Rusu, Andrei A, Veness, Joel, Bellemare, Marc G,
Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K,
Ostrovski, Georg, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–
533, 2015.

Mnih, Volodymyr, Badia, Adria Puigdomenech, Mirza,
Mehdi, Graves, Alex, Lillicrap, Timothy, Harley, Tim,
Silver, David, and Kavukcuoglu, Koray. Asynchronous
methods for deep reinforcement learning. In ICML, pp.
1928–1937, 2016.

Mouret, Jean-Baptiste and Clune, Jeff. Illuminating
search spaces by mapping elites. ArXiv e-prints,
abs/1504.04909, 2015.

Mouret, Jean-Baptiste and Doncieux, Stephane. Overcom-
ing the bootstrap problem in evolutionary robotics us-
ing behavioral diversity. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC-2009),
pp. 1161–1168. IEEE, 2009.

Nair, Arun, Srinivasan, Praveen, Blackwell, Sam, Alci-
cek, Cagdas, Fearon, Rory, De Maria, Alessandro, Pan-
neershelvam, Vedavyas, Suleyman, Mustafa, Beattie,
Charles, Petersen, Stig, et al. Massively parallel meth-
ods for deep reinforcement learning. arXiv preprint
arXiv:1507.04296, 2015.



Osband, Ian, Blundell, Charles, Pritzel, Alexander, and
Van Roy, Benjamin. Deep exploration via bootstrapped
dqn. In NIPS, pp. 4026–4034, 2016.

Pascanu, Razvan, Dauphin, Yann N, Ganguli, Surya, and
Bengio, Yoshua. On the saddle point problem for non-
convex optimization. arXiv preprint arXiv:1405.4604,
2014.

Plappert, Matthias, Houthooft, Rein, Dhariwal, Prafulla,
Sidor, Szymon, Chen, Richard Y, Chen, Xi, Asfour,
Tamim, Abbeel, Pieter, and Andrychowicz, Marcin. Pa-
rameter space noise for exploration. arXiv preprint
arXiv:1706.01905, 2017.

Pugh, Justin K, Soros, Lisa B., and Stanley, Kenneth O.
Quality diversity: A new frontier for evolutionary com-
putation. 3(40), 2016. ISSN 2296-9144.

Robbins, Herbert and Monro, Sutton. A stochastic approx-
imation method. The annals of mathematical statistics,
pp. 400–407, 1951.

Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever, I.
Evolution Strategies as a Scalable Alternative to Rein-
forcement Learning. ArXiv e-prints, 1703.03864, March
2017.

Salimans, Tim, Goodfellow, Ian, Zaremba, Wojciech, Che-
ung, Vicki, Radford, Alec, and Chen, Xi. Improved tech-
niques for training gans. In NIPS, pp. 2234–2242, 2016.

Salimans, Tim, Ho, Jonathan, Chen, Xi, and Sutskever,
Ilya. Evolution strategies as a scalable alternative to re-
inforcement learning. arXiv preprint arXiv:1703.03864,
2017.

Schaul, Tom, Quan, John, Antonoglou, Ioannis, and Sil-
ver, David. Prioritized experience replay. arXiv preprint
arXiv:1511.05952, 2015.

Schulman, John, Levine, Sergey, Abbeel, Pieter, Jordan,
Michael, and Moritz, Philipp. Trust region policy opti-
mization. In ICML ’15, pp. 1889–1897, 2015.

Schulman, John, Wolski, Filip, Dhariwal, Prafulla, Rad-
ford, Alec, and Klimov, Oleg. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Sehnke, Frank, Osendorfer, Christian, Rückstieß, Thomas,
Graves, Alex, Peters, Jan, and Schmidhuber, Jürgen.
Parameter-exploring policy gradients. Neural Networks,
23(4):551–559, 2010.

Seide, Frank, Li, Gang, and Yu, Dong. Conversational
speech transcription using context-dependent deep neu-
ral networks. In Interspeech 2011. International Speech
Communication Association, August 2011.

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex,
Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout:
A simple way to prevent neural networks from overfit-
ting. The Journal of Machine Learning Research, 15(1):
1929–1958, 2014.

Stanley, Kenneth O. Compositional pattern producing net-
works: A novel abstraction of development. Genetic
Programming and Evolvable Machines Special Issue on
Developmental Systems, 8(2):131–162, 2007.

Stanley, Kenneth O., D’Ambrosio, David B., and Gauci,
Jason. A hypercube-based indirect encoding for evolving
large-scale neural networks. Artificial Life, 15(2):185–
212, 2009.

Sutton, Richard S and Barto, Andrew G. Reinforcement
learning: An introduction, volume 1. MIT press Cam-
bridge, 1998.

Todorov, Emanuel, Erez, Tom, and Tassa, Yuval. Mujoco:
A physics engine for model-based control. In Intelli-
gent Robots and Systems (IROS), 2012 IEEE/RSJ Inter-
national Conference on, pp. 5026–5033. IEEE, 2012.

Van Hasselt, Hado, Guez, Arthur, and Silver, David. Deep
reinforcement learning with double q-learning. In AAAI,
pp. 2094–2100, 2016.

Wang, Ziyu, Schaul, Tom, Hessel, Matteo, Van Hasselt,
Hado, Lanctot, Marc, and De Freitas, Nando. Dueling
network architectures for deep reinforcement learning.
arXiv preprint arXiv:1511.06581, 2015.

Watkins, Christopher JCH and Dayan, Peter. Q-learning.
Machine learning, 8(3-4):279–292, 1992.

Wierstra, Daan, Schaul, Tom, Peters, Jan, and Schmid-
huber, Juergen. Natural evolution strategies. In
Evolutionary Computation, 2008. CEC 2008.(IEEE
World Congress on Computational Intelligence). IEEE
Congress on, pp. 3381–3387. IEEE, 2008.

Williams, Ronald J. Simple statistical gradient-following
algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229–256, 1992.

Wu, Yuhuai, Mansimov, Elman, Grosse, Roger B, Liao,
Shun, and Ba, Jimmy. Scalable trust-region method for
deep reinforcement learning using kronecker-factored
approximation. In NIPS, pp. 5285–5294, 2017.

8. Supplementary Information
8.1. Hyperparameters

The policy initialization function φ generates an initial pa-
rameter vector. Bias weights for each neuron are set to



zero, and connection weights are drawn from a standard
normal distribution; these weights are then rescaled so that
the vector of incoming weights for each neuron has unit
magnitude. This procedure is known as normalized col-
umn weight initialization and the implementation here is
taken from the OpenAI baselines package (Dhariwal et al.,
2017). Without this procedure, the variance of the distribu-
tion of a neuron’s activation depends on the number of its
inputs, which can complicate optimization of DNNs (Glo-
rot & Bengio, 2010). Other principled initialization rules
could likely be substituted in its place.

Game Minimum Median Maximum
Generations Generations Generations

Amidar 226 258 269
Enduro 121 121 121
Frostbite 348 409 494
Gravitar 283 292 304
Kangaroo 242 253 322
Seaquest 145 167 171
Skiing 81 86 88
Venture 71 72 75
Zaxxon 335 342 349

Table 2. The number of generations the GA needed to reach
4B frames.

Hyperparameter Humanoid Image Atari
Locomotion Hard Maze

Population Size (N) 12,500+1 20,000+1 5,000+1
Mutation power (σ) 0.00224 0.005 0.005
Truncation Size (T) 625 61 10
Number of Trials 5 1 1
Archive Probability 0.01

Table 3. Hyperparameters. Population sizes are incremented to
account for elites (+1). Many of the unusual numbers were found
via preliminary hyperparameter searches in other domains.

Algorithm 2 Novelty Search (GA-NS)

Input: mutation power σ, population size N , number
of individuals selected to reproduce per generation T ,
policy initialization routine φ, empty archive A, archive
insertion probability p
for g = 1, 2...G generations do

for i = 1, ..., N in next generation’s population do
if g = 1 then
Pg
i = φ(N (0, I)) {Initialize random DNN}

BCg
i = BC(Pg

i )
F g
i = F (Pg

i )
else

if i = 1 then
Pg
i = Pg−1

i ;F g
i = F g−1

i {Copy most novel}
BCg

i = BCg−1
i

else
k = uniformRandom(1, T ) {Select parent}
Sample ε ∼ N (0, I)
Pg
i = Pg−1

k + σε {mutate parent}
BCg

i = BC(Pg
i )

F g
i = F (Pg

i )
for i = 1, ..., N in next generation population do
N g

i = dist(BCg
i ,A ∪BCg)

Insert BCg
i into A with probability p

Sort (Pg , BCg , F g) in descending order by N g

Return: highest performing policy


