
Creating High-Level Components
with a Generative Representation
for Body-Brain Evolution

Gregory S. Hornby∗
Jordan B. Pollack
DEMO Lab
Computer Science Department
Brandeis University
Waltham, MA 02454-9110
hornby@cs.brandeis.edu
pollack@cs.brandeis.edu

Keywords
Body-brain evolution, generative
representations, representation,
Lindenmayer systems (L systems)

Abstract One of the main limitations of scalability in
body-brain evolution systems is the representation chosen for
encoding creatures. This paper defines a class of
representations called generative representations, which are
identified by their ability to reuse elements of the genotype in
the translation to the phenotype. This paper presents an
example of a generative representation for the concurrent
evolution of the morphology and neural controller of
simulated robots, and also introduces GENRE, an evolutionary
system for evolving designs using this representation.
Applying GENRE to the task of evolving robots for
locomotion and comparing it against a non-generative
(direct) representation shows that the generative
representation system rapidly produces robots with
significantly greater fitness. Analyzing these results shows
that the generative representation system achieves better
performance by capturing useful bias from the design space
and by allowing viable large scale mutations in the
phenotype. Generative representations thereby enable the
encapsulation, coordination, and reuse of assemblies of parts.

1 Introduction

The evolution of artificial creatures has come a long way since Dawkins’ evolution of
two-dimensional shapes [8]. Controllers have been evolved for fixed morphologies:
first with stimulus-response rules for animated, articulated creatures [28, 35]; then with
neural controllers [10]; and more recently for the dynamic gait of a physical, quadruped
robot [11]. More true to the spirit of artificial life is the evolution of both body and
brain, starting with Sims’ evolution of block creatures—for swimming, walking, and
light seeking [33], as well as competing for the possession of a box [32]—and Ventrella’s
evolution of stick figures for walking [36]. This has been followed by the evolution of
walking creatures [20, 26, 6], summarized in [34]. For the most part, this newer work
has not managed to surpass the complexity of Sims’ original block creatures. We
propose that one source of this difference is the differences in representations used
to encode creatures. This paper identifies a class of representations, called generative
representations, and investigates their impact on the problem of evolving locomoting
robots.

Here we consider genotypic representations as a kind of programming language.
With this analogy, the fundamental properties of programming languages can be used to

∗ Corresponding author.

c© 2002 Massachusetts Institute of Technology Artificial Life 8: 223–246 (2002)

G. S. Hornby and J. B. Pollack Creating High-Level Components

understand and classify different approaches to the underlying representations of evo-
lutionary systems. From [2], the fundamental elements of programming languages are:

• Combination. Languages create the framework for the hierarchical construction of
more powerful expressions from simpler ones, down to atomic primitives.

• Control flow. All programming languages have some form of control of execution,
which permits the conditional and repetitive use of structures.

• Abstraction. Both the ability to label compound elements (to manipulate them as
units) and the ability to pass parameters to procedures are forms of abstraction.

In implementation, these elements can be parceled out to different mechanisms, such
as branching, variables, bindings, and recursive calls, but they are nonetheless present
in some form in all programmable systems. Some of these basic properties have also
been shown to have analogues in biological systems: phenotypes are specified by
combinations of genes; the expression of one gene can be turned on or off by the
expression of another gene [24]; and an upstream protein can control a downstream
protein’s activity through a signaling pathway [3].

We can use the properties of programming languages to understand and classify
design representations. A fundamental distinction is whether a representation used in
evolution is direct or generative. In a direct representation there is a one-to-one map-
ping from each representational element of the genotype to some component in the
phenotype. A generative representation, on the other hand, is one which is capable of
reusing elements of the genotype in the construction of phenotypic components. This
reuse of components can come from iteration or from abstraction. Continuing with the
programming language analogy, a generative representation is a kind of language such
that heritable genotypic elements, together with a translation or compilation process,
control the expression of phenotypic components. For instance, the processes may
interpret genotypic information as constructs (loops, procedure calls, variables, param-
eters, etc.) to control genetic expression. Thus with a generative representation, the
individuals in the population are programs in a language whose instructions control
the flow of construction commands for creating each design.

Here we use a Lindenmayer system (L-system) [25] as the generative representation to
encode creatures. L-systems are a grammatical rewriting system in which the rewriting
rules are applied in parallel to all symbols in a string. Figure 1a shows a graphical
representation of the rules for our generative representation. In these images cubes
represent procedure calls, black spheres represent conditionals, triangles represent the
repeat operator, and spheres represent construction commands. Figure 1b shows the
sequence of assembly strings generated by this set of rules. The sequence begins with
the first cube (here a blue and red one), and the sequence of strings below it are the
strings generated after each iteration of parallel replacement. The last string of symbols
is the assembly procedure used for constructing a robot.

In this paper we explain the details of this generative representation system and
show that during evolution the system can incorporate useful biases from a robot design
problem. This incorporation of bias comes through reuse of elements in the genotype.
By continually creating new components and including these in the variations available,
the unit of variation scales with the complexity of the design. Because changing the
definition of a reused assembly of parts results in a change in all occurrences of that
assembly, the design system has the ability to make coordinated changes in several
parts of a design simultaneously.

The system we use for the evolution of robots is called GENRE, which stands for
“generative representations.” This system has been used to evolve tables [14] and

224 Artificial Life Volume 8, Number 3

G. S. Hornby and J. B. Pollack Creating High-Level Components

Figure 1. (a) A graphical version of the generative representation, along with (b) the sequence of assembly strings
it produces.

Artificial Life Volume 8, Number 3 225

http://www.mitpressjournals.org/action/showImage?doi=10.1162/106454602320991837&iName=master.img-000.jpg&w=355&h=556

G. S. Hornby and J. B. Pollack Creating High-Level Components

oscillator-controlled robots [12, 15], demonstrating in both cases that an evolutionary
algorithm (EA) using a generative representation outperforms an EA using a direct rep-
resentation. Here we describe the application of GENRE to neural-network-controlled
robots, and we call our robots genobots (for generatively encoded robots). Moving to
neural networks allows us to generate more complex movement patterns and allows
for later work to include sensors in order to evolve robots with reactive controllers.
With GENRE we evolve neural-network-controlled locomoting robots and compare
their search performance against a system that uses a direct representation. We find
that the generative representation system rapidly produces robots with significantly
greater fitness. Analyzing these results shows that the generative representation sys-
tem achieves better performance by capturing useful bias from the design space and
by allowing viable large scale mutations in the phenotype. Generative representations
thereby enable the encapsulation, coordination, and reuse of assemblies of parts.

The rest of the paper is organized as follows. First we review the different represen-
tation systems used by body-brain evolution systems. Then we describe the three parts
of our body-brain evolution system: the compiler for the generative representation, the
body-brain constructor and simulator, and the evolutionary algorithm. Next we present
the results of our experiments in evolving locomoting creatures. This is followed by a
discussion of our findings and conclusions.

2 Review of Other Representations

Prior methods of body-brain evolution each have their own format for representing the
creatures being evolved. In this section we first describe how the properties of program-
ming languages apply to design representations and then review several representative
systems.

With the exception of combination, the elements of programming languages listed
in the introduction translate directly to design representations. Two types of control
flow are conditionals and iterative expressions. Conditionals can be implemented with
an if statement, as in genetic programming (GP) [22], or a rule that governs the next
state in a cellular automaton (CA). Iteration is a looping ability, such as the repeat
structure in cellular encoding [9], or embedded in the fundamental behavior of CAs.
Abstraction is the ability to encapsulate part of the genotype and label it so that it can
be used like automatically defined functions (ADFs) in GP [23] or automatically defined
subnetworks in cellular encoding. Abstraction can be seen when subfunctions can take
parameters, as with ADFs. Combination refers to the ability to create more complex
expressions from the basic set of commands in the language. While GP allows explicit
combinations of expressions, combination is not fully enabled by mere adjacency or
proximity in the strings utilized by typical representations in genetic algorithms.

Sims used an embedded, directed graph representation to specify the construction
of his creatures [33]. Nodes in the top layer of the graph represent body segments, and
within the node is another graph for the body segment’s neural controller. An advantage
of encapsulating the neural units inside the nodes for body segments is that copying,
or recombining, subgraphs automatically swaps the associated neural controller for a
section of body parts. This representation is generative because cycles in the graph,
along with a recursive-limit parameter, are procedural constructs that specify the number
of times nodes in the cycle are to be traversed in the construction phase. But the two-
layer structure does not allow a repetition of the neural processing units inside a body
segment, because they are directly encoded as a design inside a body node.

The stick creatures evolved in Ventrella’s work [36, 37] are encoded as fixed-length
vectors of parameters for constructing a creature. Parameters specify the number of seg-
ments for a central backbone, the number of opposing limbs, the number of segments

226 Artificial Life Volume 8, Number 3

G. S. Hornby and J. B. Pollack Creating High-Level Components

Table 1. Properties of the different representations.

Control flow Abstraction

System Iteration Conditionals Labels Parameters
Bongard and Pfeifer [6] Yes Yes No No

Framsticks—recur/simul [20] No No No No

Framsticks—devel [21] Yes No No No

GENRE—direct No No No No

GENRE—generative Yes Yes Yes Yes

GOLEM [26] No No No No

Sims [33] Yes No No No

Ventrella [36] Yes No No No

in each limb, joint angles, and details for the oscillator network. While this represen-
tation is generative in the sense that it allows reuse of the genotype, the structure of
what can be reused is fixed and not evolvable.

The genotypes of creatures in Framsticks [20] are encoded as a linear assembly pro-
cedure for constructing a creature, with bracketing, which turns the basic structure
from a string to a tree. Commands in the command set attach sticks to existing ones
as well as construct the neural controller—a command for creating a neuron attaches
it to the stick most recently created and is then followed by a sequence of link con-
nections. More recently Komosinski and Rotaru-Varga have compared their original
representation, called recur for direct recurrent, against the actual representation used
by the simulator, simul, and a tree-structured representation, called devel for develop-
mental [21]. Simul consists of a list of all objects (sticks, joints, neurons, sensors, and
actuators) that make up a creature, along with all of that object’s attributes. Devel is
a tree-structured version of recur with iteration through a repeat node for repeating a
subtree. Of these, only devel is generative, because it is the only representation that
allows for reuse of the genotype.

In GOLEM [26], the representation of a creature is the design itself. Both the mor-
phology and the neural controller are stored as graph-based data structures with links
connecting actuated joints to neurons in the network. One challenge in using a graph-
based representation is in implementing meaningful recombination operators between
graphs. In this case, mutation was the only variation operator implemented.

The genotypes in the work of Bongard and Pfeifer [6] are a set of gene expression
rules for growing creatures under a simulated ontogenetic process. These rules de-
termine the division of body segments based on simulating chemical concentrations
inside each segment. Each segment also contains a neural controller, which is devel-
oped by the gene expression rules using cellular encoding commands [9]. Bongard
and Pfeifer report that similar parts of a creature also have similar gene expression pat-
terns, suggesting that this method can produce modular creatures. Here reuse comes
about through an iterative loop external to the evolved representation; at each update
iteration gene rules are applied to the developing creature.

The properties of the different representations used for the evolution of a robot’s
morphology and controller are summarized in Table 1. Not included in this summary
is a column for a representation’s structure, which is left out because determining
the structure of a representation is somewhat subjective and also depends on how
the variation operators act on an encoding. Of the reviewed representations, only
Genre’s generative representation (described in the next section) has reuse through

Artificial Life Volume 8, Number 3 227

G. S. Hornby and J. B. Pollack Creating High-Level Components

both iteration and parameterized procedures. Whereas iteration produces exact copies
of the repeated genotype, parameterized procedures can act as a parameterized module,
with the resulting phenotype depending on the input parameters.

3 Evolutionary System

The evolutionary system used to evolve creatures consists of the robot constructor and
simulator, the compiler for the generative representation, and the evolutionary algo-
rithm. Each robot is constructed from a sequence of construction commands, called an
assembly procedure, which specifies how to assemble both the morphology and the
robot’s neural controller. This string of construction commands is either evolved directly
or produced by compiling the generative representation. Robots encoded with a gener-
ative representation are called genobots (for generatively encoded robots). Our system
uses Lindenmayer systems (L-systems) as the generative representation for the genobots.
The evolutionary algorithm evolves a population of these L-systems, using the fitness
returned by the robot simulator. The following subsections describe each of these parts.

3.1 L Systems as a Generative Representation Language
The generative representation for each genobot is an L-system, a grammatical rewriting
system introduced to model the biological development of multicellular organisms [25].
Rules are applied in parallel to all characters in the string, just as cell divisions happen in
parallel in multicellular organisms. A basic L-system consists of a collection of rewriting
rules, such as

a: → b,

b: → a b.

When started with the symbol a, this L-system produces the following sequence of
strings:

a

b

ab

bab

abbab

bababbab

The class of L-systems used as the genotype for creatures in this work is context-free,
parametric Lindenmayer systems (PL-systems). Context-free indicates that the rules for
rewriting symbols do not depend on the symbol’s neighbors, and parametric specifies
that symbols and rewriting rules can take parameters. Production rules consist of a rule
head, which is the symbol to be replaced, followed by a number of condition-successor
pairs. The condition is a Boolean expression in the parameters of the production rule,
and the successor (also called the production body) consists of a sequence of characters
that replace the rule head. Rule-head symbols are rewritten by testing each of their
conditions sequentially and replacing the rule-head symbol with the successor of the
first condition that succeeds.

Because the PL-system does not have the ability to directly repeat a block of sym-
bols, iteration is added through a block-replication command. Symbols of the form

228 Artificial Life Volume 8, Number 3

G. S. Hornby and J. B. Pollack Creating High-Level Components

{ block }(n) are repeated n times, and are similar to for -next loops in computer pro-
grams. The resulting representation language has the properties of iteration, condition-
als, and abstraction with parameters.

Previously EAs have been combined with L-systems to evolve neural networks [19,
5], plants [17, 29] and architectural structures [7]. For the most part, this past work has
used non-parametric L-systems, whereas here we use parametric ones. An advantage of
a parametric L-system over a non-parametric one is that a given PL-system can produce
a family of strings, with the specific string determined by the starting parameter(s). For
example, a parameter of a production rule can be used as the argument of the repeat
command to specify the number of times a substring is to be repeated. Furthermore,
parametric L-systems naturally allow for parametric commands in the language—the
parameter of a network construction command can specify the weight of a newly
created link in the network.

3.2 Robot Constructor
Robots are constructed through a method that is a synthesis of Logo-style turtle graphics
[1] and cellular encoding [9]. Commands in the assembly procedure are for constructing
the robot’s morphology and its neural controller. So that body and brain are joined,
the command for the creation of an actuated joint also creates a link to a neuron in the
neural network. The following sections describe the morphology and neural network
constructors separately and then how a robot’s body and brain are simultaneously
constructed.

3.2.1 Network Constructor
The method for constructing the neural controllers for the artificial creatures is based on
that of cellular encoding [9]. The main difference is that build commands operate on the
links connecting the nodes, as with edge encoding [27], instead of on the nodes of the
network. With edge encoding at most one link is created with a network construction
command, which allows each command to also specify the weight to attach to that link,
and subsequences of build commands will construct the same subnetwork, regardless of
their location in the assembly procedure. Another distinction between this and cellular
encoding is that assembly procedures for constructing networks are linear sequences
of commands (strings) and not trees. A branching ability is added to strings by using
bracketed L-systems [25] with push and pop operators for storing and retrieving the
current link to a stack.

Commands for constructing the network operate on links between neurons and use
the most recently created link as the current one. Push and pop operators, “(” and “)”,
are used to store and retrieve the current link state—consisting of the from neuron,
the to neuron, and the indices of the links into these neurons—to and from the stack.
This stack of edges allows a form of branching to occur in the representation: an edge
can be pushed onto the stack followed by a sequence of commands, and then a pop
command makes the original edge the current edge again. The commands for this
language are listed in Table 2, for which the current link connects from neuron A to
neuron B.

Neurons in the network are initialized to an output value of 0.0 and are updated
sequentially by applying a transfer function to the weighted sum of their inputs with
their outputs clipped to the range ±1. The different transfer functions are: sigmoid,
using tanh(sum of inputs); linear; and oscillator. Oscillator units maintain a state that
is increased by 0.01 after each update. The output of an oscillator unit is mapped to
the range −1 to 1 by applying a triangle wave function, with a period of four, to the
sum of its inputs and its state. While using oscillating neurons increases the bias for
simple networks with simple oscillating patterns over the sigmoid-only networks used

Artificial Life Volume 8, Number 3 229

G. S. Hornby and J. B. Pollack Creating High-Level Components

Table 2. Command set for constructing neural networks.

Command Description
() Pushes and pops link state to and from stack.

decrease-weight(n) Subtracts n from the weight of the current link. If the
current link is a virtual link, creates it with weight −n.

duplicate(n) Creates a new link from neuron A to neuron B with
weight n.

increase-weight(n) Adds n to the weight of the current link. If the current
link is a virtual link, creates it with weight n.

loop(n) Creates a new link from neuron B to itself with weight
n.

merge(n) Merges neuron A into neuron B by copying all inputs of
A as inputs to B and replacing all occurrences of A as
an input with B. The current link then becomes the nth
input into B.

next(n) Changes the from-neuron in the current link to its nth
sibling.

output(n) Creates an output neuron, with a linear transfer function,
from the current from-neuron with weight n. The current
link continues to be from neuron A to neuron B.

parent(n) Changes the from-neuron in the current link to the nth
input neuron of the current from-neuron. Often there
will not be an actual link between the new from-neuron
and to-neuron, in which case a virtual link of weight 0 is
used.

reverse Deletes the current link and replaces it with a link from
B to A with the same weight as the original.

set-function(n) Changes the transfer function of the to-neuron in the
current link, B, to sigmoid (n = 0), linear (n = 1), or
oscillator (n = 2).

split(n) Creates a new neuron, C , with a sigmoid transfer func-
tion, moves the current link from A to C , and creates a
new link connecting C to B with weight n.

in [20, 26], it yields a less biased model than that of [36], in which all actuators are
driven by oscillators, or [33], which used a variety of transfer functions and oscillating
neurons.

An example of the construction of a network using this system is shown in Figure 2,
which contains the intermediate networks in parsing the following assembly procedure:

split(0.8) duplicate(3) reverse split(0.8) duplicate(2) reverse loop(1) split(0.6)
duplicate(0.4) split(0.6) duplicate(0.4) reverse parent(1) merge(1)

Networks start with a single neuron, a, which has an oscillator transfer function, and
a single link of weight 0.25 feeding to itself (Figure 2a). After executing split(0.8), a
second neuron is created with a link of 0.8 to the oscillating neuron and the original
link of weight 0.25 feeding into it (Figure 2b). Executing duplicate(3) creates a second

230 Artificial Life Volume 8, Number 3

G. S. Hornby and J. B. Pollack Creating High-Level Components

Figure 2. Construction of a neural network.

Artificial Life Volume 8, Number 3 231

G. S. Hornby and J. B. Pollack Creating High-Level Components

link from the second neuron to the first, which is then reversed in executing reverse
(Figure 2c). The execution of split(0.8) duplicate(2) reverse creates a third neuron (Fig-
ure 2d). A link from the third neuron to itself with weight 1 is created by loop(1), with
another neuron created by split(0.6) (Figure 2e). This is followed by duplicate(0.4),
which creates an additional link from neuron c to d , and then neuron e is created with
split(0.6) (Figure 2f). Another link is created from e to c with duplicate(0.4), which
is then reversed (reverse, Figure 2g). Parent(1) causes a shift of link state from the
c → e link to a new virtual link b → e, shown as a dashed line (Figure 2h). These two
neurons are then joined together by the merge(1) command, and the final network is
shown in Figure 2i.

3.2.2 Morphology Constructor
The morphology constructor uses a set of construction commands similar to that of
L-system languages for creating plants [30] to build a body through the control of a
Logo-style turtle [1]. As the turtle moves, rods are created, and these become the body
of the robot. Commands instruct the turtle to move forward or backward, change
orientation, or create an actuated joint. The method for constructing the morphology
of a creature, with joints controlled by actuators, is described in [15]. The following
section describes the method by which the morphology construction is combined with
the neural network constructor of the previous section.

3.2.3 Neural-Network-Controlled Robots
A robot’s morphology and neural controller are constructed by combining the command
sets for constructing body and brain into one language and then building body and
brain simultaneously. This command language consists of the morphology construction
commands, listed in Table 3, and the neural construction commands from Section 3.2.1.
The resulting language has two push-pop commands with two stacks: (), for pushing
and popping the link state to the link stack; and [], for pushing and popping both the
morphology and link states to a stack. A robot’s body and brain are joined together by
attaching the current input neuron to the newly created actuated joint each time a joint
command—revolute-1, revolute-2, twist-90, or twist-180—is executed. By defining
joint-creation commands in a way that affects both controller and morphology, we
induce a connection between body and brain.

An example of an assembly procedure using this language is

[right(1.0) forward right(1.0) forward right(1.0) forward right(1.0) forward]
duplicate(0.25) split(0.4) reverse revolute-1(1.0) duplicate(0.25) split(0.4)
reverse revolute-1(1.0) left(1.0) right(1.0) forward right(1.0) forward right(1.0)
forward right(1.0) forward

A sequence of images showing intermediate stages in the construction of this robot
is contained in Figure 3. Before any commands are processed, a robot consists of
a single oscillating neuron and a point (Figure 3a). After executing the commands
[right(1.0) forward right(1.0) forward right(1.0) forward right(1.0) forward], the robot
consists of a square of four rods and the oscillating neuron (Figure 3b). After execut-
ing duplicate(0.25) split(0.4) reverse revolute-1(1.0), a second neuron is created, and
it is attached to the actuated joint at the end of the newly created rod (Figure 3c).
The commands duplicate(0.25) split(0.4) reverse revolute-1(1.0) are repeated, and a
third neuron is created and is attached to another actuated joint (Figure 3d). The last
commands, left(1.0) right(1.0) forward right(1.0) forward right(1.0) forward right(1.0)

232 Artificial Life Volume 8, Number 3

G. S. Hornby and J. B. Pollack Creating High-Level Components

Figure 3. Construction of a genobot.

Artificial Life Volume 8, Number 3 233

G. S. Hornby and J. B. Pollack Creating High-Level Components

Table 3. Command set for constructing the morphology of a robot. Neural controllers are constructed by using
this language along with that of Table 2.

Command Description
[] Pushes and pops state to and from stack.

forward Moves the turtle forward in the current direction, creating a
rod 10 units long if none exists or traversing to the end of
the existing bar.

back Goes back up the parent of the current bar.

revolute-1 Forward, ends with a joint with range 0◦ to 90◦ about the
current Z axis that is controlled by the current neuron.

revolute-2 Forward, ends with a joint with range −45◦ to 45◦ about the
current Z axis that is controlled by the current neuron.

twist-90 Forward, ends with a joint with range 0◦ to 90◦ about the
current X axis that is controlled by the current neuron.

twist-180 Forward, ends with a joint with range −90◦ to 90◦ about the
current X axis that is controlled by the current neuron.

left(n) Rotates heading n × 90◦ about the turtle’s Y axis.

right(n) Rotates heading n × −90◦ about the turtle’s Y axis.

up(n) Rotates heading n × 90◦ about the turtle’s Z axis.

down(n) Rotates heading n × −90◦ about the turtle’s Z axis.

clockwise(n) Rotates heading n × 90◦ about the turtle’s X axis.

counter-clockwise(n) Rotates heading n × −90◦ about the turtle’s X axis.

forward, attach another square onto the end of the last revolute-1 joint (Figure 3e).
Figure 3f shows the creature with the joints halfway through their movement range.

An example of a generative representation using this construction language is

P0(n0) : n0 > 3.0 → P1(5.0) P0(n0 − 2.0) left(1.0) P1(4.0)

n0 > 0.0 → { duplicate(0.25) split(0.4) reverse revolute(1.0) }(2.0)

P1(n0) : n0 > 4.0 → [P1(4.0)]

n0 > 0.0 → { right(1.0) forward(1.0) }(n0)

This L-system consists of two productions, each containing two condition-successor
pairs, and, when started with P0(4), produces the following sequence of strings1:

1. P0(4)

2. P1(5.0) P0(2.0) left(1.0) P1(4.0)

3. [P1(4.0)] { duplicate(0.25) split(0.4) reverse revolute-1(1.0) }(2.0) left(1.0) {
right(1.0) forward(1.0) }(4.0)

4. [{ right(1.0) forward(1.0) }(4.0)] { duplicate(0.25) split(0.4) reverse revolute-1(1.0)
}(2.0) left(1.0) { right(1.0) forward(1.0) }(4.0)

1 For clarity the unraveling of block replication expressions is left until the final iteration.

234 Artificial Life Volume 8, Number 3

G. S. Hornby and J. B. Pollack Creating High-Level Components

5. [right(1.0) forward right(1.0) forward right(1.0) forward right(1.0) forward]
duplicate(0.25) split(0.4) reverse revolute-1(1.0) duplicate(0.25) split(0.4) reverse
revolute-1(1.0) left(1.0) right(1.0) forward right(1.0) forward right(1.0) forward
right(1.0) forward

This last sequence of commands is the same assembly procedure as the one that pro-
duces the genobot in Figure 3.

3.2.4 Simulation
Once a string of build commands has been executed and the resulting robot is con-
structed, its behavior is evaluated in a quasi-static kinematics simulator similar to that
used in [26]. First the neural network is updated to determine the desired angles of
each actuated joint; then the kinematics are simulated by computing successive frames
of moving joints in small angular increments of at most 0.06◦. After each update the
structure is then settled by determining whether or not the robot’s center of mass falls
outside its footprint and then repeatedly rotating the entire structure about the edge of
the footprint nearest the center of mass until it is stable.

To achieve robot designs that are sufficiently robust to transfer to the real world,
error is added to evolved structures as in the method of [18] and [16]. A robot design is
evaluated by simulating it three times, once without error and twice with different error
values applied to the joint angles. Error is applied to all connections that are not part
of a cycle and is a random rotation in the range of ±0.1 radians about each of the three
coordinate axes. The returned fitness of an evolved individual is the minimum fitness
scored from the three trials. By implementing error that is fixed throughout a trial and
evaluating a design with different error values, evolved designs are made robust to
imperfections in real-world construction. Examples of oscillator-controlled robots that
were successfully transferred to the real world are in [12, 13].

3.3 Evolutionary Algorithm
The evolutionary algorithm and variation operators are described in detail in [15]; here
we give an overview of the system. The initial population of L-systems is created by
making random production rules. Evolution then proceeds by iteratively selecting a
collection of individuals with high fitness as parents and using them to create a new
population of individual L-systems by applying mutation or recombination. Mutation
creates a new individual by copying the parent individual and making a small change
in it. Changes that can occur are: replacing one command with another; perturbing the
parameter of a command by adding or subtracting a small amount to or from it; changing
a production rule’s parameter equation in a successor; adding or deleting a sequence
of commands in a successor; or changing the condition equation. Recombination takes
two individuals, p1 and p2, as parents and creates one child individual, c, by making
a copy of p1 and then inserting a small part of p2 into it. This is done by replacing
one successor of c with a successor of p2, inserting a subsequence of commands from
a successor in p2 into c, or replacing a subsequence of commands in a successor of
c with a subsequence of commands from a successor in p2. Data is kept for each
individual L-system—specifically, which production rules and successors were used,
as well as the value range for each parameter. This data, similar to the environment
frame of a programming language, allows variation operators to be applied only to
those production rules that were used. It also allows history-based constraints on the
mutation of conditional values.

Since variations sometimes create an invalid robot (with too many or too few rods,
or such that the body parts intersect at some point while moving), variation operators

Artificial Life Volume 8, Number 3 235

G. S. Hornby and J. B. Pollack Creating High-Level Components

are tried a second time, for a particular set of parents, if the first attempt did not create
an offspring whose fitness was at least 10% of that of its parent(s).

4 Results

To compare a direct representation with a generative representation we evolved neural-
network-controlled robots for the task of locomotion. The fitness was a function of the
distance moved by the robot’s center of mass on a flat surface. In order to discourage
sliding, the fitness was reduced by the distance that points of the robot’s body were
dragged along the ground. Finally, a design was given zero fitness if it had a sequence
of four or more rods in which none of the rods was part of a closed loop with other
rods. This constraint was intended to keep the system from producing spindly robots
that would not function well in reality.2 The evolutionary algorithm was configured
to run with a population of 200 individuals for 250 generations. The direct repre-
sentation was implemented as an L-system with one production rule, no arguments,
and one condition-successor pair whose condition always succeeds, and without the
repeat operator or the ability to call production rules. The maximum length of the
production body was set to 10,000 commands, allowing assembly procedures of up
to 10,000 commands to be evolved. The generative representation used an L-system
with fifteen production rules, two condition-successor pairs, and two parameters for
each production rule. For the generative representation, the maximum length of the
production body was set to fifteen commands, and the maximum allowed length of
an unraveled generative representation was set to 10,000 commands—the same length
as with the direct representation. Implementing the direct representation as a degen-
erate case of the generative representation allowed the evolutionary design system to
use the same variation operators on both representations, so that the only difference
between the two systems was the representation. All results in this section are from
the same set of twenty runs, ten using the direct representation and ten the generative
representation.

4.1 Fitness Comparison
Our first graph, Figure 4, plots the average fitness (over 10 runs) of the best individuals
evolved with the direct representation against the best evolved with the generative
representation. The final fitness values achieved were:

Direct: 134, 744, 42, 48, 62, 74, 42, 66, 86, 312.
Generative: 8180, 664, 2308, 3386, 696, 224, 1880, 364, 3810, 4556.

After 10 generations the generative representation achieved a higher average fitness than
runs with the direct representation did after 250 generations, and the final genobots
evolved with the generative representation were more than 10 times faster, on average,
than robots evolved with the direct representation.

Figure 5 shows the best two individuals evolved with the direct representation (a
and b) and the best two evolved with the generative representation (c and d). From
the images it can be seen that the robots evolved with the direct representation are
irregular and have few components, whereas the robots evolved with the generative
representation are more regular and, in some cases, have two or more levels of reused
assemblies of components. Furthermore, the network morphologies constructed from
the generative representation also contain some reuse of subnetworks. The neural
network controller shown in Figure 6 is the controller for the genobot in Figure 5h. In

2 A different approach would be to put a limit on the maximum torque applied on a connection, but this would require a simulator
with more detailed physics than the one used here.

236 Artificial Life Volume 8, Number 3

G. S. Hornby and J. B. Pollack Creating High-Level Components

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

0 25 50 75 100 125 150 175 200 225 250

av
er

ag
e

fit
ne

ss

generation

generative
direct

Figure 4. Fitness comparison between the direct representation and the generative representation.

addition to its reuse of components, its linear sequence of outputs corresponds to the
linear sequence of joints in the genobot’s morphology.

4.2 Reuse and Evolvability
In our introduction we argued that one advantage of a generative representation is
its ability to create more complex components from simpler ones. The graph in Fig-
ure 7a shows, for each generation, the average length of the genotype for both rep-
resentations, and the length of the assembly procedure produced by the generative
representation. In the initial populations that used the generative representation the
average length of the genotype was 126 symbols and the average length of the gener-
ated assembly procedure was 534 symbols. This means that on average each symbol
in the genotype was being used 4.2 times in creating the assembly procedure. After
250 generations, this evolved to an average length of the genotype of 208 symbols
and an average length of the resulting assembly procedure of 2,387 symbols, which
is an average reuse of 11.5. The average number of parts (rods only) used in a de-
sign is plotted in the graph in Figure 7b. As the genotype sizes for direct and for
generative representations are about the same, the increased number of parts used
in designs constructed from the generative representation suggests that the multiple
expression of genotype produced a reuse of parts. Further support for this assertion
comes from the images in Figures 5c–h, which show that designs evolved with the
generative representation have the same assemblies of parts occurring multiple times
in a genobot.

The second part of our argument for a generative representation is that, through evo-
lution, useful bias of the of search space becomes embedded in a design encoded with
a generative representation, resulting in better performance of the variation operators.
To compare the performance in variation operators between the two representations
we compare the change in fitness between a parent and its child (from mutation) and

Artificial Life Volume 8, Number 3 237

G. S. Hornby and J. B. Pollack Creating High-Level Components

Figure 5. The best two individuals evolved with: (a) and (b), the direct representation; (c) and (d), the generative
representation. Genobots (e)–(h) were evolved with the generative representation and no constraints on limb
lengths.

238 Artificial Life Volume 8, Number 3

http://www.mitpressjournals.org/action/showImage?doi=10.1162/106454602320991837&iName=master.img-003.jpg&w=296&h=538

G. S. Hornby and J. B. Pollack Creating High-Level Components

Figure 6. Evolved neural network controller for the genobot in Figure 5h.

plot it against the difference between parent’s and child’s assembly procedures. For
the direct representation, the assembly procedure is the same as the genotype; for the
generative representation, the assembly procedure is the last string produced by the
L-system. In the case where the assembly procedures are the same length, the com-
mand difference between two assembly procedures is the number of locations for which
the parent and child have different symbols. When strings have different lengths, the

Artificial Life Volume 8, Number 3 239

G. S. Hornby and J. B. Pollack Creating High-Level Components

0

500

1000

1500

2000

2500

0 50 100 150 200 250

av
er

ag
e

le
ng

th

generation

generative - L-sys
generative’s assembly proc.

direct

0

25

50

75

100

125

150

175

0 50 100 150 200 250

av
er

ag
e

nu
m

be
r

of
 p

ar
ts

generation

generative
direct

(a) (b)

Figure 7. Graph of (a) length of the genotypes, and of the command string produced by the generative representation,
against generation, and (b) number of parts against generation.

number of occurrences of each symbol is counted and the command difference is the
sum of the differences between these values.3

Figure 8 shows four different plots of change in fitness against command difference.
The first graph, Figure 8a, is for a single mutation operator applied to a direct rep-
resentation. Most mutations were close to the parent, and most successful mutations
were less than 10 commands apart. As offspring under the generative representation
will tend to be further from their parent (because of reuse of the genotype), we also
plot change in fitness against command difference for the direct representation with
1–6 mutations (chosen with uniform probability) applied. From the graphs it can be
seen that mutations on the direct representation were usually successful only when the
change in command difference between assembly procedures was small (less than 10),
and even then improvements were not large. The graph in Figure 8c is a plot of change
in fitness against command difference between assembly procedures and shows that
with the generative representation there was a larger variation in assembly procedure
distance between a parent and its child than with the direct representation. This graph
also shows that offspring were more likely to have higher fitness than their parents
with the generative representation than with the direct representation.

To determine if this improved performance under variation was only a result of the
types of strings generated by the generative representation, we also applied
1-6 mutations to the assembly procedure produced by the generative representation.
The plot of Figure 8d shows that variation of the generative representation’s assembly
procedure was not as successful as variation of the generative representation itself, sug-
gesting that the structure with the generative representation had captured some useful
bias of the design problem over the course of evolution.

As a way of normalizing for the higher average fitness achieved with the generative
representation, we next show the rate of success (a child’s fitness greater than its
parent’s) for the mutation operator for different command differences between parent
and child (Figure 9). Again we include a comparison with one to six mutations applied
to the direct representation as well as one to six mutations applied to the assembly
procedure produced by the generative representation. With the direct representation,
the success rate of the mutation operator quickly dropped to zero as the difference

3 An alternative distance metric that could be used is edit distance, but this is an expensive computation for bracketed strings
(effectively trees) and would be prohibitive [31].

240 Artificial Life Volume 8, Number 3

G. S. Hornby and J. B. Pollack Creating High-Level Components

Figure 8. Plot of amount of change in genotype from parent to child against change in fitness.

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.3

0 100 200 300 400 500 600 700 800 900 1000

pr
ob

ab
ili

ty
 o

f i
m

pr
ov

em
en

t

command difference between assembly procedures

direct (1 mutation)
direct (1-6 mutations)

0

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.3

0 100 200 300 400 500 600 700 800 900 1000

pr
ob

ab
ili

ty
 o

f i
m

pr
ov

em
en

t

command difference between assembly procedures

generative
generative’s assembly procedure

Figure 9. Probability of success (child is more fit than parent) comparison between different representations, for
ranges 1–50, 51–100, 101–150, . . .

between parent’s and child’s assembly procedures increased. In contrast, the success
rate of mutation decayed more gracefully with increasing command difference when
the mutation was applied to the generative representation—even when parent and
child were 500 construction symbols apart, the success rate was 10%. The higher
success rate of mutation, especially with larger differences in assembly procedures,
and greater average increase in fitness with the generative representation provide strong
evidence that the generative representation has captured meaningful bias of the design
problem.

Artificial Life Volume 8, Number 3 241

http://www.mitpressjournals.org/action/showImage?doi=10.1162/106454602320991837&iName=master.img-005.png&w=370&h=274

G. S. Hornby and J. B. Pollack Creating High-Level Components

Table 4. Summary of results for evolving neural-network-controlled robots.

Value

Quantity Direct Generative
Average final best fitness 157 2609

Number of mutations with distance > 0 184,667 188,749

Success rate of mutations 16.4% 18.1%

Average fitness change −27 −526

Average fitness change of successful mutations 19 178

Average distance of mutations 3 118

Average distance of successful mutations 3 44

Number of large mutations (distance > 100) 65 27,899

Success rate of large mutations (distance > 100) 10.8% 10.5%

Average fitness change of large mutations (distance > 100) −74 −1396

Average fitness change of successful large mutations
(distance > 100) 25 357

Average distance of large mutations (distance > 100) 131 693

Average distance of successful large mutations (distance >

100)
113 344

4.3 Summary of Results
The results of our experiments are summarized in Table 4. While the overall success
rate of mutations is similar between the two representations, there is a difference in
the average distance of mutations. Mutations for the direct representation were con-
siderably smaller in assembly-procedure command difference than for the generative
representation. Examining the probability of success of a mutation for similar sized
distances (the graphs in Figure 9, which plot the rate of success for distance in bins of
size 50), it can be seen that for all distances the rate of success was higher with the gen-
erative representation. In addition, considering only mutations that are successful (the
child has higher fitness than its parent), the average increase in fitness was significantly
higher with the generative representation than with the direct representation.

5 Discussion

By allowing the inclusion of subprocedure-like structures (here, the L-system’s produc-
tion rules) a generative representation can create more complex building blocks from
simpler ones. Since these production rules are a single character that can be inserted
or removed from the genotype with a single mutation, variation operators can scale
with design complexity because new assemblies of components become possible with
unit variations. In addition, reusing code in the genotype to reuse parts in the actual
design makes certain types of design changes easier. The images in Figure 10 show
examples of reuse through variations applied to the individual of Figure 5d. Changing
the genotype to add rods to an assembly of parts results in a change in all occurrences
of that part in the design (Figure 10b), and a single change in the genotype can cause
the addition or subtraction of a large number of parts (Figure 10c). In both cases the
same change would be harder to make with a direct representation. For example, even
though recombination can duplicate assemblies of parts in a direct representation, a

242 Artificial Life Volume 8, Number 3

G. S. Hornby and J. B. Pollack Creating High-Level Components

Figure 10. Mutations of a genobot: (a) the genobot from Figure 5d; (b) a change in a low-level component of parts
causes all occurrences of this part to have the change; (c) a single change in the genotype changes the number of
high-level components in the genobot from four to six.

later application of variation will only change one instance of this assembly. As designs
become more complex, the possibility of the same change happening simultaneously
in all uses of this assembly becomes increasingly unlikely with a direct representation,
yet remains constant with a generative representation.

Of the representations described in Section 2, the generative representation of GENRE
has similarities to those of Framsticks and the one used by Sims. The method of spec-
ifying a creature’s morphology by a sequence of commands, with parentheses and
brackets used for branching, is almost identical to the Framsticks recur representation
[20]. One difference is in specifying the neural controller. In Framsticks, this is done by
listing the links immediately after the neuron, whereas in our system a cellular encoding
language is used. The other difference is that the Framsticks recur representation does
not provide for reuse. Both Framsticks devel [21] and Sims’ system [33] allow for parts of
the genotype to be reused through a looping ability. This looping is like the repetition
blocks of the generative representation defined in Section 3 and is the beginning of
a procedural description. The representation of GENRE extends the ability to define
loops by including labeled subprocedures with parameters in the genotype—similar to
the modules of GLiB [4], the automatically defined functions (ADFs) of GP [22], and the
automatically defined subnetworks (ADSNs) of [9]—and conditionals on the parameters.

In our comparison, robots evolved with a generative representation were, on aver-
age, ten times faster than those evolved with a direct representation. These results differ
from those of [21], in which Komosinski and Rotaru-Varga’s comparison produced little
difference between a generative representation (devel), and a direct representation (re-

Artificial Life Volume 8, Number 3 243

http://www.mitpressjournals.org/action/showImage?doi=10.1162/106454602320991837&iName=master.img-006.jpg&w=320&h=280

G. S. Hornby and J. B. Pollack Creating High-Level Components

cur). Since their generative representation had only the property of iteration, whereas
our generative representation also has conditionals and abstraction with parameters,
this suggests that these additional properties can make a significant difference on the
performance of an evolutionary design system.

6 Conclusion

The concurrent evolution of bodies and brains has been limited by the representa-
tions used to encode them [36, 20, 26, 6]. Here we have defined the class of genera-
tive representations and presented GENRE, a generic system for evolving designs with
this class of representations. Previous work has shown how this system can be used
to evolve table designs [14], two-dimensional oscillator-controlled genobots [12], and
three-dimensional oscillator-controlled genobots [15]. Since GENRE treats command
sets and assembly procedures as symbols and strings, this evolutionary system can be
used, by replacing one command set with another and/or replacing the design con-
structor, on any design domain in which a design can be constructed from a linear
assembly procedure.

In this paper we have described a method for evolving the morphology and neural
controller of three-dimensional robots. We have shown that robots evolved with the
generative representation reach higher fitness than those evolved with a direct repre-
sentation. This improved performance has been shown to be the result of the ability
of the generative representation to reuse parts of the design. In summary, generative
representations accelerate evolution by learning useful problem bias over the course of
the evolution and by encapsulating, in heritable elements of the genotype, assemblies
of phenotypic components, thereby allowing mutation to scale with design complexity.

Generative representations capture the fundamental elements of general purpose
programming languages—combination, control flow, and abstraction. However, we
note that the linear representation is somewhat limiting, even though primitives like
“push” and “pop” add tree-like constructions. As continuing work expands the range
and power of generative representations while maintaining evolvability, we expect to
see ever more progress toward general purpose evolutionary design.

Acknowledgments
This research was supported in part by the Defense Advanced Research Projects Ad-
ministration (DARPA) Grant DASG60-99-1-0004. The authors would like to thank the
members of the DEMO Lab (especially J. Rieffel, S. Viswanathan, and R. Watson),
H. Lipson, M. Xiu, and the anonymous reviewers.

References
1. Abelson, H., & diSessa, A. A. (1982). Turtle geometry. Cambridge, MA: MIT Press.

2. Abelson, H., Sussman, G. J., & Sussman, J. (1996). Structure and interpretation of computer
programs (2nd ed.). New York: McGraw-Hill.

3. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular
biology of the cell (4th ed.). New York: Garland Publishing.

4. Angeline, P., & Pollack, J. B. (1994). Coevolving high-level representations. In C. Langton
(Ed.), Proceedings of the Third Workshop on Artificial Life. Reading, MA: Addison-Wesley.

5. Boers, E. J. W., Kuiper, H., Happel, B. L. M., & Sprinkhuizen-Kuyper, I. G. (1993).
Designing modular artificial neural networks. In H. A. Wijshoff (Ed.), Proceedings of
Computing Science in The Netherlands (pp. 87–96). SION, Stichting Mathematisch Centrum.

244 Artificial Life Volume 8, Number 3

G. S. Hornby and J. B. Pollack Creating High-Level Components

6. Bongard, J. C., & Pfeifer, R. (2001). Repeated structure and dissociation of genotypic and
phenotypic complexity in artificial ontogeny. In Genetic and Evolutionary Computation
Conference (pp. 829–836). San Francisco, CA: Morgan Kaufmann.

7. Coates, P., Broughton, T., & Jackson, H. (1999). Exploring three-dimensional design worlds
using Lindenmayer systems and genetic programming. In P. J. Bentley (Ed.), Evolutionary
design by computers.

8. Dawkins, R. (1986). The blind watchmaker. Harlow, UK: Longman.

9. Gruau, F. (1994). Neural network synthesis using cellular encoding and the genetic
algorithm. Unpublished doctoral dissertation, Ecole Normale Supérieure de Lyon.

10. Grzeszczuk, R., & Terzopoulos, D. (1995). Automated learning of muscle-actuated
locomotion through control abstraction. Computer Graphics, 29, 63–70.

11. Hornby, G. S., Fujita, M., Takamura, S., Yamamoto, T., & Hanagata, O. (1999). Autonomous
evolution of gaits with the Sony quadruped robot. In Proceedings of the Genetic and
Evolutionary Computation Conference (pp. 1297–1304). San Francisco, CA: Morgan
Kaufmann.

12. Hornby, G. S., Lipson, H., & Pollack, J. B. (2001). Evolution of generative design systems
for modular physical robots. In IEEE International Conference on Robotics and Automation
(pp. 4146–4151). Piscataway, NJ: IEEE Press.

13. Hornby, G. S., Lipson, H., & Pollack, J. B. (2002). Generative representations for the
automatic design of modular physical robots (Technical report). Waltham, MA: Computer
Science Dept., Brandeis University.

14. Hornby, G. S., & Pollack, J. B. (2001). The advantages of generative grammatical encodings
for physical design. In Congress on Evolutionary Computation (pp. 600–607). Piscataway,
NJ: IEEE Press.

15. Hornby, G. S., & Pollack, J. B. (2001). Evolving L-systems to generate virtual creatures.
Computers and Graphics, 25(6), 1041–1048.

16. Hornby, G. S., Takamura, S., Hanagata, O., Fujita, M., & Pollack, J. (2000). Evolution of
controllers from a high-level simulator to a high dof robot. In J. Miller (Ed.), Evolvable
systems: From biology to hardware, Proceedings of the Third International Conference (ICES
2000), Lecture Notes in Computer Science, Vol. 1801 (pp. 80–89). New York:
Springer-Verlag.

17. Jacob, C. (1996). Evolution programs evolved. In H.-M. Voigt, W. Ebeling, I. Rechenberg, &
H.-P. Schwefel (Eds.), Parallel problem solving from nature, PPSN-IV, Lecture Notes in
Computer Science 1141 (pp. 42–51). Berlin: Springer-Verlag.

18. Jakobi, N. (1998). Minimal simulations for evolutionary robotics. Unpublished doctoral
dissertation, School of Cognitive and Computing Sciences, University of Sussex.

19. Kitano, H. (1990). Designing neural networks using genetic algorithms with graph
generation system. Complex Systems, 4, 461–476.

20. Komosinski, M. (2000). The world of Framsticks: Simulation, evolution, interaction. In
Virtual Worlds 2, Lecture Notes in Artificial Intelligence 1834 (pp. 214–224). New York:
Springer-Verlag.

21. Komosinski, M., & Rotaru-Varga, A. (2001). Comparison of different genotype encodings for
simulated 3D agents. Artificial Life, 7 (4), 395–418.

22. Koza, J. R. (1992). Genetic programming: On the programming of computers by means of
natural selection. Cambridge, MA: MIT Press.

23. Koza, J. R. (1994). Genetic programming II: Automatic discovery of reusable programs.
Cambridge, MA: MIT Press.

24. Lewin, B. (2000). Genes VII. Oxford, UK: Oxford University Press.

25. Lindenmayer, A. (1968). Mathematical models for cellular interaction in development,
parts I, II. Journal of Theoretical Biology, 18, 280–299, 300–315.

Artificial Life Volume 8, Number 3 245

http://www.mitpressjournals.org/action/showLinks?doi=10.1162%2F106454602320991837&crossref=10.1016%2FS0097-8493%2801%2900157-1&citationId=p_15
http://www.mitpressjournals.org/action/showLinks?doi=10.1162%2F106454602320991837&system=10.1162%2F106454601317297022&citationId=p_21
http://www.mitpressjournals.org/action/showLinks?doi=10.1162%2F106454602320991837&crossref=10.1016%2F0022-5193%2868%2990079-9&citationId=p_25

G. S. Hornby and J. B. Pollack Creating High-Level Components

26. Lipson, H., & Pollack, J. B. (2000). Automatic design and manufacture of robotic lifeforms.
Nature, 406, 974–978.

27. Luke, S., & Spector, L. (1996). Evolving graphs and networks with edge encoding:
Preliminary report. In J. Koza (Ed.), Late-breaking papers of genetic programming 96
(pp. 117–124). Stanford, CA: Stanford Bookstore.

28. Ngo, J. T., & Marks, J. (1993). Spacetime constraints revisited. Computer Graphics, 27,
343–350.

29. Ochoa, G. (1998). On genetic algorithms and lindenmayer systems. In A. Eiben, T. Baeck,
M. Schoenauer, & H. P. Schwefel (Eds.), Parallel problem solving from nature V
(pp. 335–344). New York: Springer-Verlag.

30. Prusinkiewicz, P., & Lindenmayer, A. (1990). The algorithmic beauty of plants. New York:
Springer-Verlag.

31. Sankoff, D., & Kruskal, J. B. (Eds.). (1983). Time warps, string edits and macromolecules:
The theory and practice of sequence comparison. Reading, MA: Addison-Wesley.

32. Sims, K. (1994). Evolving 3D morphology and behavior by competition. In R. Brooks and
P. Maes (Eds.), Proceedings of the Fourth Workshop on Artificial Life, (pp. 28–39).
Cambridge, MA: MIT Press.

33. Sims, K. (1994). Evolving virtual creatures. Computer Graphics, 28, 15–22.

34. Taylor, T., & Massey, C. (2001). Recent developments in the evolution of morphologies and
controllers for physically simulated creatures. Artificial Life, 7 (1), 77–87.

35. van de Panne, M., & Fiume, E. (1993). Sensor-actuator networks. Computer Graphics, 27,
335–342.

36. Ventrella, J. (1994). Explorations in the emergence of morphology and locomotion behavior
in animated characters. In R. Brooks and P. Maes (Eds.), Proceedings of the Fourth
Workshop on Artificial Life. Cambridge, MA: MIT Press.

37. Ventrella, J. (1999). Animated artificial life. In J.-C. Heudin (Ed.), Virtual worlds: Synthetic
universes, digital life, and complexity. Reading, MA: Perseus Books.

246 Artificial Life Volume 8, Number 3

http://www.mitpressjournals.org/action/showLinks?doi=10.1162%2F106454602320991837&system=10.1162%2F106454601300328034&citationId=p_34
http://www.mitpressjournals.org/action/showLinks?doi=10.1162%2F106454602320991837&crossref=10.1109%2F38.291524&citationId=p_33
http://www.mitpressjournals.org/action/showLinks?doi=10.1162%2F106454602320991837&crossref=10.1038%2F35023115&citationId=p_26

This article has been cited by:

1. Lídio Mauro Lima de Campos. 2017. A neuro-evolutive algorithm biologically inspired based on rational agents. International
Journal of Hybrid Intelligent Systems 9, 1-14. [Crossref]

2. Lucas Helms, Jeff Clune. 2017. Improving HybrID: How to best combine indirect and direct encoding in evolutionary algorithms.
PLOS ONE 12:3, e0174635. [Crossref]

3. Lídio Mauro Lima de Campos, Roberto Célio Limão de Oliveira, Mauro Roisenberg. 2016. Optimization of neural networks
through grammatical evolution and a genetic algorithm. Expert Systems with Applications 56, 368-384. [Crossref]

4. . How Might Aging Have Evolved as an Adaptation? 165-191. [Crossref]
5. Justin K. Pugh, Lisa B. Soros, Kenneth O. Stanley. 2016. Quality Diversity: A New Frontier for Evolutionary Computation.

Frontiers in Robotics and AI 3. . [Crossref]
6. Hongjin Zhang, Yizuo Zhang, Weidong Zhang. A comparative study of optimization algorithms for correction of radar system

error 3737-3742. [Crossref]
7. Gustavo A. Cardona, Wilfrido Moreno, Alfredo Weitzenfeld, Juan M. Calderon. Reduction of impact force in falling robots using

variable stiffness 1-6. [Crossref]
8. Oveis Abedinia, Nima Amjady, Ali Ghasemi. 2016. A new metaheuristic algorithm based on shark smell optimization. Complexity

21:5, 97. [Crossref]
9. . Evolutionary Programming and Heuristic Optimization 131-155. [Crossref]

10. Jamie Hewland, Geoff Nitschke. The Benefits of Adaptive Behavior and Morphology for Cooperation 1047-1054. [Crossref]
11. Khalid M. Salama, Ashraf M. Abdelbar. 2015. Learning neural network structures with ant colony algorithms. Swarm Intelligence

9:4, 229-265. [Crossref]
12. James Watson, Geoff Nitschke. Evolving Robust Robot Team Morphologies for Collective Construction 1039-1046. [Crossref]
13. Paul Szerlip, Kenneth O. Stanley. 2015. Indirectly Encoding Running and Jumping Sodarace Creatures for Artificial Life. Artificial

Life 21:4, 432-444. [Abstract] [Full Text] [PDF] [PDF Plus]
14. O. Abedinia, N. Amjady, M. Shafie-khah, J.P.S. Catalão. 2015. Electricity price forecast using Combinatorial Neural Network

trained by a new stochastic search method. Energy Conversion and Management 105, 642-654. [Crossref]
15. Danesh Tarapore, Jean-Baptiste Mouret. 2015. Evolvability signatures of generative encodings: Beyond standard performance

benchmarks. Information Sciences 313, 43-61. [Crossref]
16. SAMEER GUPTA, EKTA SINGLA. 2015. Evolutionary robotics in two decades: A review. Sadhana 40:4, 1169-1184. [Crossref]
17. James Watson, Geoff Nitschke. Deriving minimal sensory configurations for evolved cooperative robot teams 3065-3071.

[Crossref]
18. Stephane Doncieux, Nicolas Bredeche, Jean-Baptiste Mouret, Agoston E. (Gusz) Eiben. 2015. Evolutionary Robotics: What,

Why, and Where to. Frontiers in Robotics and AI 2. . [Crossref]
19. Stephane Doncieux, Jean-Baptiste Mouret. 2014. Beyond black-box optimization: a review of selective pressures for evolutionary

robotics. Evolutionary Intelligence 7:2, 71-93. [Crossref]
20. René Doursat, Carlos Sánchez. 2014. Growing Fine-Grained Multicellular Robots. Soft Robotics 1:2, 110-121. [Crossref]
21. Yao Yao, Kathleen Marchal, Yves Van de Peer. 2014. Improving the Adaptability of Simulated Evolutionary Swarm Robots in

Dynamically Changing Environments. PLoS ONE 9:3, e90695. [Crossref]
22. D. Lobo, M. Solano, G. A. Bubenik, M. Levin. 2014. A linear-encoding model explains the variability of the target morphology

in regeneration. Journal of The Royal Society Interface 11:92, 20130918-20130918. [Crossref]
23. Maryam Mahsal Khan, Arbab Masood Ahmad, Gul Muhammad Khan, Julian F. Miller. 2013. Fast learning neural networks

using Cartesian genetic programming. Neurocomputing 121, 274-289. [Crossref]
24. Joel Lehman, Sebastian Risi, David D?Ambrosio, Kenneth O Stanley. 2013. Encouraging reactivity to create robust machines.

Adaptive Behavior 21:6, 484-500. [Crossref]
25. Paul Tonelli, Jean-Baptiste Mouret. 2013. On the Relationships between Generative Encodings, Regularity, and Learning Abilities

when Evolving Plastic Artificial Neural Networks. PLoS ONE 8:11, e79138. [Crossref]
26. David B. D’Ambrosio, Kenneth O. Stanley. 2013. Scalable multiagent learning through indirect encoding of policy geometry.

Evolutionary Intelligence 6:1, 1-26. [Crossref]

https://doi.org/10.3233/HIS-170244
https://doi.org/10.1371/journal.pone.0174635
https://doi.org/10.1016/j.eswa.2016.03.012
https://doi.org/10.1201/9781315371214-8
https://doi.org/10.3389/frobt.2016.00040
https://doi.org/10.1109/CCDC.2016.7531634
https://doi.org/10.1109/SECON.2016.7506716
https://doi.org/10.1002/cplx.21634
https://doi.org/10.1201/b19256-8
https://doi.org/10.1109/SSCI.2015.151
https://doi.org/10.1007/s11721-015-0112-z
https://doi.org/10.1109/SSCI.2015.150
https://doi.org/10.1162/ARTL_a_00185
http://www.mitpressjournals.org/doi/full/10.1162/ARTL_a_00185
http://www.mitpressjournals.org/doi/pdf/10.1162/ARTL_a_00185
http://www.mitpressjournals.org/doi/pdfplus/10.1162/ARTL_a_00185
https://doi.org/10.1016/j.enconman.2015.08.025
https://doi.org/10.1016/j.ins.2015.03.046
https://doi.org/10.1007/s12046-015-0357-7
https://doi.org/10.1109/CEC.2015.7257271
https://doi.org/10.3389/frobt.2015.00004
https://doi.org/10.1007/s12065-014-0110-x
https://doi.org/10.1089/soro.2014.0014
https://doi.org/10.1371/journal.pone.0090695
https://doi.org/10.1098/rsif.2013.0918
https://doi.org/10.1016/j.neucom.2013.04.005
https://doi.org/10.1177/1059712313487390
https://doi.org/10.1371/journal.pone.0079138
https://doi.org/10.1007/s12065-012-0086-3

27. Krzysztof Krawiec, Tomasz Pawlak. 2013. Locally geometric semantic crossover: a study on the roles of semantics and homology
in recombination operators. Genetic Programming and Evolvable Machines 14:1, 31-63. [Crossref]

28. Sebastian Risi, Kenneth O. Stanley. 2012. An Enhanced Hypercube-Based Encoding for Evolving the Placement, Density, and
Connectivity of Neurons. Artificial Life 18:4, 331-363. [Abstract] [Full Text] [PDF] [PDF Plus]

29. Sebastian Risi, Kenneth O. Stanley. A unified approach to evolving plasticity and neural geometry 1-8. [Crossref]
30. Jean-François Dupuis, Zhun Fan, Erik D. Goodman. 2012. Evolutionary Design of Both Topologies and Parameters of a Hybrid

Dynamical System. IEEE Transactions on Evolutionary Computation 16:3, 391-405. [Crossref]
31. J. Thangavelautham, G. M. T. D'Eleuterio. 2012. Tackling Learning Intractability Through Topological Organization and

Regulation of Cortical Networks. IEEE Transactions on Neural Networks and Learning Systems 23:4, 552-564. [Crossref]
32. J.-B. Mouret, S. Doncieux. 2012. Encouraging Behavioral Diversity in Evolutionary Robotics: An Empirical Study. Evolutionary

Computation 20:1, 91-133. [Abstract] [Full Text] [PDF] [PDF Plus]
33. Jimmy Secretan, Nicholas Beato, David B. D'Ambrosio, Adelein Rodriguez, Adam Campbell, Jeremiah T. Folsom-Kovarik,

Kenneth O. Stanley. 2011. Picbreeder: A Case Study in Collaborative Evolutionary Exploration of Design Space. Evolutionary
Computation 19:3, 373-403. [Abstract] [PDF] [PDF Plus]

34. Jeff Clune, Kenneth O. Stanley, Robert T. Pennock, Charles Ofria. 2011. On the Performance of Indirect Encoding Across the
Continuum of Regularity. IEEE Transactions on Evolutionary Computation 15:3, 346-367. [Crossref]

35. Vinod K. Valsalam, Risto Miikkulainen. 2011. Evolving Symmetry for Modular System Design. IEEE Transactions on Evolutionary
Computation 15:3, 368-386. [Crossref]

36. Gregory. S. Hornby, Jason D. Lohn, Derek S. Linden. 2011. Computer-Automated Evolution of an X-Band Antenna for NASA's
Space Technology 5 Mission. Evolutionary Computation 19:1, 1-23. [Abstract] [PDF] [PDF Plus]

37. Yaochu Jin, Yan Meng. 2011. Morphogenetic Robotics: An Emerging New Field in Developmental Robotics. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 41:2, 145-160. [Crossref]

38. J. Bongard. 2011. Morphological change in machines accelerates the evolution of robust behavior. Proceedings of the National
Academy of Sciences 108:4, 1234-1239. [Crossref]

39. Enrique Fernandez-Blanco, Julian Dorado, Jose A. Serantes, Daniel Rivero, Juan R. Rabuñal. Artificial Cells for Information
Processing: Iris Classification 44-52. [Crossref]

40. Alessandro Fontana. Epigenetic Tracking: Biological Implications 10-17. [Crossref]
41. Daniel Lobo, Francisco J. Vico. 2010. Evolution of form and function in a model of differentiated multicellular organisms with

gene regulatory networks. Biosystems 102:2-3, 112-123. [Crossref]
42. Shuguang Li, Jianping Yuan, Franz Nigl, Hod Lipson. A cuboctahedron module for a reconfigurable robot 535-541. [Crossref]
43. Daniel Lobo, Francisco J. Vico. 2010. Evolutionary development of tensegrity structures. Biosystems 101:3, 167-176. [Crossref]
44. Jason Gauci, Kenneth O. Stanley. 2010. Autonomous Evolution of Topographic Regularities in Artificial Neural Networks. Neural

Computation 22:7, 1860-1898. [Abstract] [Full Text] [PDF] [PDF Plus]
45. Maryam Mahsal Khan, Gul Muhammad Khan, Julian F. Miller. Evolution of neural networks using Cartesian Genetic

Programming 1-8. [Crossref]
46. Ting Hu, Wolfgang Banzhaf. 2010. Evolvability and Speed of Evolutionary Algorithms in Light of Recent Developments in

Biology. Journal of Artificial Evolution and Applications 2010, 1-28. [Crossref]
47. Pierre De Loor, Kristen Manac’h, Jacques Tisseau. 2009. Enaction-Based Artificial Intelligence: Toward Co-evolution with

Humans in the Loop. Minds and Machines 19:3, 319-343. [Crossref]
48. J. Ruiz-del-Solar, R. Palma-Amestoy, R. Marchant, I. Parra-Tsunekawa, P. Zegers. 2009. Learning to fall: Designing low damage

fall sequences for humanoid soccer robots. Robotics and Autonomous Systems 57:8, 796-807. [Crossref]
49. Christopher MacLeod, Grant Maxwell, Sethuraman Muthuraman. 2009. Incremental growth in modular neural networks.

Engineering Applications of Artificial Intelligence 22:4-5, 660-666. [Crossref]
50. M. Mazzapioda, A. Cangelosi, S. Nolfi. Evolving morphology and control: A distributed approach 2217-2224. [Crossref]
51. Jean-Baptiste Mouret, Stephane Doncieux. Evolving modular neural-networks through exaptation 1570-1577. [Crossref]
52. Kenneth O. Stanley, David B. D'Ambrosio, Jason Gauci. 2009. A Hypercube-Based Encoding for Evolving Large-Scale Neural

Networks. Artificial Life 15:2, 185-212. [Abstract] [PDF] [PDF Plus]
53. Artur Matos, Reiji Suzuki, Takaya Arita. 2009. Heterochrony and Artificial Embryogeny: A Method for Analyzing Artificial

Embryogenies Based on Developmental Dynamics. Artificial Life 15:2, 131-160. [Abstract] [PDF] [PDF Plus]

https://doi.org/10.1007/s10710-012-9172-7
https://doi.org/10.1162/ARTL_a_00071
http://www.mitpressjournals.org/doi/full/10.1162/ARTL_a_00071
http://www.mitpressjournals.org/doi/pdf/10.1162/ARTL_a_00071
http://www.mitpressjournals.org/doi/pdfplus/10.1162/ARTL_a_00071
https://doi.org/10.1109/IJCNN.2012.6252826
https://doi.org/10.1109/TEVC.2011.2159724
https://doi.org/10.1109/TNNLS.2011.2178311
https://doi.org/10.1162/EVCO_a_00048
http://www.mitpressjournals.org/doi/full/10.1162/EVCO_a_00048
http://www.mitpressjournals.org/doi/pdf/10.1162/EVCO_a_00048
http://www.mitpressjournals.org/doi/pdfplus/10.1162/EVCO_a_00048
https://doi.org/10.1162/EVCO_a_00030
http://www.mitpressjournals.org/doi/pdf/10.1162/EVCO_a_00030
http://www.mitpressjournals.org/doi/pdfplus/10.1162/EVCO_a_00030
https://doi.org/10.1109/TEVC.2010.2104157
https://doi.org/10.1109/TEVC.2011.2112663
https://doi.org/10.1162/EVCO_a_00005
http://www.mitpressjournals.org/doi/pdf/10.1162/EVCO_a_00005
http://www.mitpressjournals.org/doi/pdfplus/10.1162/EVCO_a_00005
https://doi.org/10.1109/TSMCC.2010.2057424
https://doi.org/10.1073/pnas.1015390108
https://doi.org/10.1007/978-3-642-21283-3_6
https://doi.org/10.1007/978-3-642-21283-3_2
https://doi.org/10.1016/j.biosystems.2010.08.003
https://doi.org/10.1109/IROS.2010.5649958
https://doi.org/10.1016/j.biosystems.2010.06.005
https://doi.org/10.1162/neco.2010.06-09-1042
http://www.mitpressjournals.org/doi/full/10.1162/neco.2010.06-09-1042
http://www.mitpressjournals.org/doi/pdf/10.1162/neco.2010.06-09-1042
http://www.mitpressjournals.org/doi/pdfplus/10.1162/neco.2010.06-09-1042
https://doi.org/10.1109/CEC.2010.5586547
https://doi.org/10.1155/2010/568375
https://doi.org/10.1007/s11023-009-9165-3
https://doi.org/10.1016/j.robot.2009.03.011
https://doi.org/10.1016/j.engappai.2008.11.002
https://doi.org/10.1109/CEC.2009.4983216
https://doi.org/10.1109/CEC.2009.4983129
https://doi.org/10.1162/artl.2009.15.2.15202
http://www.mitpressjournals.org/doi/pdf/10.1162/artl.2009.15.2.15202
http://www.mitpressjournals.org/doi/pdfplus/10.1162/artl.2009.15.2.15202
https://doi.org/10.1162/artl.2009.15.2.15200
http://www.mitpressjournals.org/doi/pdf/10.1162/artl.2009.15.2.15200
http://www.mitpressjournals.org/doi/pdfplus/10.1162/artl.2009.15.2.15200

54. Javier Ruiz-del-Solar, Rodrigo Palma-Amestoy, Paul Vallejos, R. Marchant, P. Zegers. Designing Fall Sequences That Minimize
Robot Damage in Robot Soccer 271-283. [Crossref]

55. Wojciech Jaśkowski, Krzysztof Krawiec, Bartosz Wieloch. 2008. Multitask Visual Learning Using Genetic Programming.
Evolutionary Computation 16:4, 439-459. [Abstract] [PDF] [PDF Plus]

56. Jean-Baptiste Mouret, Stéphane Doncieux. 2008. MENNAG: a modular, regular and hierarchical encoding for neural-networks
based on attribute grammars. Evolutionary Intelligence 1:3, 187-207. [Crossref]

57. Jason D. Lohn, Gregory S. Hornby, Derek S. Linden. 2008. Human-competitive evolved antennas. AI EDAM 22:03. . [Crossref]
58. Luisa Caldas. 2008. Generation of energy-efficient architecture solutions applying GENE_ARCH: An evolution-based generative

design system. Advanced Engineering Informatics 22:1, 59-70. [Crossref]
59. Kenneth O. Stanley. 2007. Compositional pattern producing networks: A novel abstraction of development. Genetic Programming

and Evolvable Machines 8:2, 131-162. [Crossref]
60. J.B. Pollack. 2006. Mindless Intelligence. IEEE Intelligent Systems 21:3, 50-56. [Crossref]
61. Nicolas Lassabe, Herve Luga, Yves Duthen. Evolving Creatures in Virtual Ecosystems 11-20. [Crossref]
62. K.O. Stanley, B.D. Bryant, R. Miikkulainen. 2005. Real-Time Neuroevolution in the NERO Video Game. IEEE Transactions

on Evolutionary Computation 9:6, 653-668. [Crossref]
63. J.C. Bongard, H. Lipson. 2005. Nonlinear System Identification Using Coevolution of Models and Tests. IEEE Transactions on

Evolutionary Computation 9:4, 361-384. [Crossref]
64. J. Teo, H.A. Abbass. 2005. Multiobjectivity and Complexity in Embodied Cognition. IEEE Transactions on Evolutionary

Computation 9:4, 337-360. [Crossref]
65. Sung Young Jung. 2005. A Topographical Method for the Development of Neural Networks for Artificial Brain Evolution.

Artificial Life 11:3, 293-316. [Abstract] [PDF] [PDF Plus]
66. Domenico Parisi. 2004. Internal robotics. Connection Science 16:4, 325-338. [Crossref]
67. Raffaele Bianco, Stefano Nolfi. 2004. Toward open-ended evolutionary robotics: evolving elementary robotic units able to self-

assemble and self-reproduce. Connection Science 16:4, 227-248. [Crossref]
68. Gregory S Hornby. 2004. Functional Scalability through Generative Representations: The Evolution of Table Designs.

Environment and Planning B: Planning and Design 31:4, 569-587. [Crossref]
69. G.S. Hornby, H. Lipson, J.B. Pollack. 2003. Generative representations for the automated design of modular physical robots.

IEEE Transactions on Robotics and Automation 19:4, 703-719. [Crossref]
70. Alon Gal, Gady Mahal, Moshe Sipper. 2003. Evolutionary Plantographics. Artificial Life 9:2, 191-205. [Abstract] [PDF] [PDF

Plus]
71. R. Kicinger, T. Arciszewski, K. De Jong. Morphogenesis and structural design: cellular automata representations of steel structures

in tall buildings 411-418. [Crossref]

https://doi.org/10.1007/978-3-642-02921-9_24
https://doi.org/10.1162/evco.2008.16.4.439
http://www.mitpressjournals.org/doi/pdf/10.1162/evco.2008.16.4.439
http://www.mitpressjournals.org/doi/pdfplus/10.1162/evco.2008.16.4.439
https://doi.org/10.1007/s12065-008-0015-7
https://doi.org/10.1017/S0890060408000164
https://doi.org/10.1016/j.aei.2007.08.012
https://doi.org/10.1007/s10710-007-9028-8
https://doi.org/10.1109/MIS.2006.55
https://doi.org/10.1007/11941354_2
https://doi.org/10.1109/TEVC.2005.856210
https://doi.org/10.1109/TEVC.2005.850293
https://doi.org/10.1109/TEVC.2005.846902
https://doi.org/10.1162/1064546054407185
http://www.mitpressjournals.org/doi/pdf/10.1162/1064546054407185
http://www.mitpressjournals.org/doi/pdfplus/10.1162/1064546054407185
https://doi.org/10.1080/09540090412331314768
https://doi.org/10.1080/09540090412331314759
https://doi.org/10.1068/b3015
https://doi.org/10.1109/TRA.2003.814502
https://doi.org/10.1162/106454603322221522
http://www.mitpressjournals.org/doi/pdf/10.1162/106454603322221522
http://www.mitpressjournals.org/doi/pdfplus/10.1162/106454603322221522
http://www.mitpressjournals.org/doi/pdfplus/10.1162/106454603322221522
https://doi.org/10.1109/CEC.2004.1330886

