
736 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 12, NO. 6, DECEMBER 2008

Coevolution of Fitness Predictors
Michael D. Schmidt and Hod Lipson, Member, IEEE

Abstract—We present an algorithm that coevolves fitness pre-
dictors, optimized for the solution population, which reduce fit-
ness evaluation cost and frequency, while maintaining evolutionary
progress. Fitness predictors differ from fitness models in that they
may or may not represent the objective fitness, opening opportuni-
ties to adapt selection pressures and diversify solutions. The use of
coevolution addresses three fundamental challenges faced in past
fitness approximation research: 1) the model learning investment;
2) the level of approximation of the model; and 3) the loss of ac-
curacy. We discuss applications of this approach and demonstrate
its impact on the symbolic regression problem. We show that co-
evolved predictors scale favorably with problem complexity on a
series of randomly generated test problems. Finally, we present ad-
ditional empirical results that demonstrate that fitness prediction
can also reduce solution bloat and find solutions more reliably.

Index Terms—Bloat Reduction, coevolution, fitness modeling,
symbolic regression.

I. INTRODUCTION

F ITNESS PREDICTION is a technique used to replace fit-
ness evaluations in evolutionary algorithms with a light-

weight approximation that adapts with the solution population.
A closely related concept to fitness prediction is fitness mod-
eling, where a predefined model or coarse simulation is used
to approximate fitness in cases where the exact fitness requires
an expensive simulation or physical experiment [1], [2]. Fitness
predictors however, cannot approximate the entire fitness land-
scape, but instead shift their focus throughout evolution.

Fitness approximations have been used in other situations as
well, such as smoothing rugged fitness landscapes, mapping dis-
crete fitnesses to continuous values, and diversifying popula-
tions through ambiguity [3]. In this paper, we show that co-
evolving fitness predictors may also offer further benefits by
destabilizing local optima and by resisting bloated solutions.

Recent research in fitness modeling and prediction has fo-
cused on approximation methods and strategies for use of ap-
proximated fitness values [3]. We review significant advances
and challenges found in recent work and motivate a coevolu-
tionary approach. We suggest that coevolution can resolve three
fundamental difficulties faced in many fitness approximation
applications.

1) Model training effort: Often significant computational ef-
fort is required to train the desired fitness model.

Manuscript received September 5, 2006; revised January 29, 2007July 27,
2007November 11, 2007. First published March 20, 2008; current version pub-
lished December 2, 2008. This research was supported in part by the U.S. Na-
tional Science Foundation (NSF) under Grant DMI 0547376.

M. D. Schmidt is with the Department of Computer Science, Cornell Univer-
sity, Ithaca, NY 18450 USA (e-mail: mds47@cornell.edu).

H. Lipson is with the Department of Mechanical and Aerospace Engineering
and the Department of Computing and Information Science, Cornell University,
Ithaca NY 14853–7501 USA (e-mail: hod.lipson@cornell.edu).

Digital Object Identifier 10.1109/TEVC.2008.919006

2) Level of approximation: It is often unclear what level of
approximation is accurate enough to achieve desired re-
sults. High-quality approximations provide greater accu-
racy, but require more computation. Low-quality approxi-
mations are less accurate, but require less computation.

3) Loss of accuracy: Similarly, even high-quality approxima-
tions are bound to have some loss of accuracy due to either
the model structure itself or the data available to tune it.
In the worst case, this effect can hide or even change the
global optimum—in which case, exact fitness calculations
are still needed to find the optimal solution.

The goal of this paper is to address these issues through co-
evolution. In the general framework, there are three populations:
1) solutions to the original problem, evaluated using only fitness
predictors; 2) fitness predictors of the problem; and 3) fitness
trainers, whose exact fitness is used to train predictors. Solutions
are evolved to maximize their predicted fitness using a predictor
from the predictor population. Fitness predictors are evolved to
maximize prediction accuracy using trainers selected from the
solution population. Trainers are evolved or selected to create
discrepancies between predictors in order to address their weak-
nesses. Solution and predictor populations start with random so-
lutions and random fitness predictors, respectively. The trainer
population is initialized with random solutions and their exact
fitnesses.

In the following sections, we first review preliminary topics
and current research in coevolution and fitness approximation.
We then propose a coevolutionary algorithm based on a general
framework and discuss its application in example domains. This
algorithm is then adapted to the symbolic regression benchmark
problem in genetic programming to measure its impact.

The experimental part of this paper is structured as follows.
First, we compare performance using three other fitness ap-
proximation methods to test what role coevolution plays in per-
formance (Section V-A). We then duplicate experiments in re-
cent symbolic regression literature and compare their results
(Section V-B). We then test predictor performance as a function
of complexity on randomly generated target functions, in order
to measure how the fitness prediction algorithms scale with re-
spect to increasingly difficult problems (Section V-C). Finally,
we discuss empirical trends demonstrating how coevolving fit-
ness predictors can improve reliability and the quality of final
solutions (Section VI), even when the advantages of computa-
tional cost reduction are ignored.

II. RELATED WORK

A. Coevolution

In a coevolutionary algorithm, the fitness metric for one in-
dividual becomes a function of other individuals, possibly in-
cluding itself. More precisely, one individual can affect the rel-

1089-778X/$25.00 © 2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 16, 2008 at 13:18 from IEEE Xplore. Restrictions apply.

SCHMIDT AND LIPSON: COEVOLUTION OF FITNESS PREDICTORS 737

ative fitness ranking between two other individuals in the same
or a separate population [4]. As a result, the fitness pressures
and incentives imposed on the solutions may change throughout
evolution.

Coevolution is often applied to problems in which no explicit
fitness objective is known in advance, or where the objective is
abstract. For example, one may wish to find a solution that com-
petes well against other solutions. In this example, competition
between individuals imposed by coevolution can continuously
expose weak individuals and refine successful individuals, until
a dominant solution emerges.

Several studies have been devoted to the application of coevo-
lution to enhance problem solving [5]–[13], with the main goal
of controlling coevolutionary dynamics that often result in a lack
of progress or progress in unanticipated directions [14]–[18].
Here, we use a specific form of coevolution [19], [20] which
addresses many of these challenges.

The aim of coevolving fitness predictors is to allow both so-
lutions and fitness predictors to enhance each other automat-
ically until an optimal problem solution is found. The solu-
tion population benefits from the fitness predictor population
through reduction in computational cost (for other benefits, see
Section VI). The fitness predictor population benefits from the
solution population by refining its approximation in the most
useful areas of the fitness domain.

B. Fitness Modeling

Fitness modeling has become an active area in evolutionary
computation with many varying approaches and results [3].
Here, we discuss the motivations, methods, and challenges of
fitness modeling.

1) Motivation: There are several reasons for utilizing fitness
approximation through modeling. The first, and most common,
is to reduce the computational complexity of expensive fitness
evaluations. However, approximation can be used advanta-
geously in other problems as well. Fitness models have been
applied to handle noisy fitness functions, smooth multimodal
landscapes, and define a continuous fitness in domains that lack
an explicit fitness (e.g., evolving art and music) [3]. Here, we
discuss motivations for fitness modeling and example applica-
tions.

— Reducing complexity: Many applications of evolutionary
algorithms are in high-complexity or intractable domains,
where the fitness calculation can be prohibitively time con-
suming. For example, fitness modeling has been applied
to structural design optimization [1], [2], [21]–[25] that
often requires time-consuming finite-element calculations.
Often the resolution provided by the exact fitness objective
is unnecessary for evolutionary progress.

— No explicit fitness: Many domains do not have a com-
putable fitness. For example, in human interactive evo-
lution [26] (e.g., evolution of art and music), a human
user must select favorable individuals. Fitness models have
been applied in these domains to reduce user fatigue and
define a computable fitness landscape that can be searched,
while waiting for the user to give more feedback [11], [27],
[28].

— Noisy fitness: Some fitness functions are very noisy. To
produce stable fitness rankings, algorithms typically av-
erage many evaluations, but this can greatly increase the
computational cost [29]. An alternative approach may be
to develop a statistical model [30].

— Smoothing landscapes: Almost all evolutionary domains
suffer from multimodal landscapes that are often dense
with local optima. Fitness approximation can greatly re-
duce the frequency and severity of local optima. Landscape
smoothing has been observed with interpolation, kernels,
and fitness clustering [24], [25], [31], [32].

— Promoting diversity: When models smooth fitness land-
scapes, they often flatten local optima or produce different
regions with similar fitness. While this is undesirable when
using a single model throughout evolution, it can be advan-
tageous for producing diversity as long as the fitness model
continuously adapts, as is proposed in this paper.

Despite their benefits, the use of fitness models can create new
problems. Currently, it is not always clear when the benefits of
fitness modeling outweigh the costs. In the following sections,
we overview basic fitness modeling approaches and their trade-
offs. We then discuss our approach to resolving these tradeoffs
through coevolution.

2) Methods: The technique of fitness modeling falls natu-
rally in the field of machine learning. Depending on the struc-
ture of solution encodings, many different machine learning ap-
proaches such as neural nets, support vector machines, decision
trees, Bayesian networks, k-nearest-neighbor, and polynomial
regression can be trained to map individuals in order to approx-
imate fitnesses efficiently [11], [22]. Modern approaches utilize
boosting, bagging, and ensemble learning to produce accurate
models. A major drawback of these approaches is that it is often
unclear which approach will work best for a given problem [3].

Subsampling of training data is also a common way to re-
duce the cost of fitness evaluation [17], [33]. In many problems,
fitness is calculated by evaluating individuals on training cases
and combining the total error. With a subsample, only a fraction
of the training data is evaluated.

Evolutionary-specific fitness modeling methods include fit-
ness inheritance, fitness imitation, and partial evaluation. In fit-
ness inheritance [34]–[36], fitness values are transferred from
parents to children during crossover (similar to parent passing
on a legacy or education). A form of fitness inheritance for es-
timation of distribution algorithms [37] (EDAs) builds a model
of the fitness function based on the structure of the probabilistic
model used in the algorithm [38]. In fitness imitation [22], indi-
viduals are clustered into groups based on a distance metric. The
fitness of the central individual of each cluster is then evaluated
in full and assigned to all individuals in that cluster. In partial
evaluation [39], the fitness of some individuals are calculated
exactly, while others are modeled or inherited.

Once a fitness model has been chosen, there are many ways
to incorporate it into the evolutionary process. It can be used
simply to initialize the population, guide crossover and muta-
tion, or replace (some) fitness evaluations [3]. For example, a
fitness predictor such as a neural network is used to select off-
spring from all potential crossovers of two parents [23]. In this

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 16, 2008 at 13:18 from IEEE Xplore. Restrictions apply.

738 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 12, NO. 6, DECEMBER 2008

paper, however, we focus only on replacing actual fitness eval-
uations with the fitness predictor.

3) Challenges: The use of an approximate fitness model
comes at a cost and with potentially unacceptable consequences.

— Training the model: Fitness models like neural nets,
SVMs, and Gaussian processes require significant over-
head to train. When advanced methods like bagging,
boosting, and ensemble methods are used, this investment
becomes significantly larger. In addition, a significant
amount of exact fitnesses must be calculated for training
and validation data to effectively learn any type of model
ahead of time.
By using coevolution, we can train these models in par-
allel with the problems’ solutions. As shown in [32], early
stages of evolution only require coarse fitness models.
As the solution population progresses, so do the fitness
models. In this fashion, coevolution retains an automatic
“coarseness adjustment” without the need to train several
different approximations in advance.

— Level of approximation: How powerful must the fitness
model be to facilitate progress throughout evolution? If a
single fitness model is used, it may need to be quite com-
plex in order to model all possible solutions in the fitness
landscape.
When fitness models are coevolved, the models can be op-
timized for only the individuals in the current population.
The models do not need to encapsulate the entire land-
scape, but only a subset, so the chosen method can be sig-
nificantly less complex.

— Loss of accuracy: In most applications, the computational
advantage of using a fitness approximation comes at a cost
in fitness accuracy. In the worst case, the global optima
may be removed entirely from the fitness landscape.

Similar to adapting the level of approximation, the optimiza-
tion of the models to the current population can keep the sub-
jective fitness of current candidate solutions pointed toward the
global optima in an active learning fashion [19]. Solutions will
evolve to exploit their fitness model. In coevolution, the fitness
model can adapt through the selection of trainers to redirect so-
lutions so that they are consistent with the true optima.

III. COEVOLVED FITNESS PREDICTORS

A. General Framework

In this section, we present a simple framework before de-
scribing our implementation. A conventional evolutionary al-
gorithm can be viewed as an optimization to find the most fit
solution. In this sense, the optimal solution, , is defined as

where is the set of all possible candidate solutions to
the problem and is the exact computed fitness of
solution .

In the coevolutionary algorithm, we replace all fitness eval-
uations with a fitness predictor . In this instance, the solution

Fig. 1. High-level overview of the coevolution of solutions and fitness predic-
tors algorithm.

objective is a function of the predictor instead of the exact fit-
ness

where is the fitness predictor used.
We coevolve the fitness predictors in a second population to

make as accurate as possible for the current solution popula-
tion. A third population of fitness trainers is used to evaluate how
closely fitness predictors are approximating the exact fitness.
Fitness trainers are chosen from the solution population peri-
odically that have the highest prediction variance (e.g., lowest
confidence).

The objectives for each population are summarized below,
where asterisks specify an optimal result that is being searched
for in each population

where is the set of all problem solutions, is the current
solution population, is the set of all possible fitness predic-
tors, is the current predictor population, is the current
trainers population, is the highest ranked predictor in ,
and is the average predicted fitness of solution among the
current predictors. It is important to note that all three popula-
tions are evolved in parallel and their objectives will be dynamic
and changing over each generation.

To summarize the framework, the solution population evolves
to maximize the fitness of the current best fitness predictor.
Trainers are solutions chosen from the solution population that
produce the most variance in predictions among the predictor

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 16, 2008 at 13:18 from IEEE Xplore. Restrictions apply.

SCHMIDT AND LIPSON: COEVOLUTION OF FITNESS PREDICTORS 739

population. The fitness predictor population evolves to mini-
mize the difference between exact and predicted fitnesses of the
current population.

Algorithm

1) Overview: The algorithm presented in this paper has three
populations: Problem solutions, fitness predictors, and fitness
trainers. This section outlines the basics needed to implement
this coevolutionary approach based on this general framework.
A high-level algorithm overview is given in Fig. 1.

At the start, solutions, fitness predictors, and trainers are
randomly initialized. The algorithm then chooses an individual
from the solution population to measure its exact fitness for
use in training the fitness predictors (elaborated upon in next
section). The algorithm then evolves the solution population
using the highest ranked fitness predictor, and evolves the
predictors using the fitness trainers. Finally, the highest ranked
individual is tested for convergence (described below), and the
algorithm completes if successful. Pseudocode for evolving
each population is shown in Fig. 2.

2) Evaluating Exact Fitnesses: The objective of this step is to
select an individual from the solution population that will help
the fitness predictors optimize to the current solutions. There-
fore, we want to choose an individual whose fitness can be pre-
dicted with the least confidence. To do this efficiently, we se-
lect the individual that has the highest variance in predicted fit-
ness among predictors in the predictor population. Variance has
a strong correlation with reducing uncertainty [40] and with im-
proving evolved individuals [19].

In many model types, it is often beneficial to “forget” past
solution fitness information in order to allow simple predictor
encodings to specialize in only the current and other recently
observed solutions. In our implementation, we store only the
most recent trainers, discarding the oldest as new trainers are
evaluated.

Removal of old trainers can also speed up predictor evalua-
tion, but could lead to cycling. For example, removing a trainer
may remove pressure to explain an important part of the fitness
domain. In which case, solutions and predictors that modeled
this region well could drift away temporarily, while learning
other regions. To prevent this effect, we could opt to keep all
trainers for an additional computational cost—but we did not
find cycling to be prohibitive in our experiments.

3) Evolving the Populations: Candidate solutions and fitness
predictors are coevolved in parallel using two threads. Pseu-
docode is shown in Fig. 2. Fitness trainers are selected periodi-
cally in the predictor thread.

The solution thread begins by randomizing the population of
candidate problem solutions. The main loop then evolves the
solution population. Variation is introduced using single point
crossover with probability and mutation with probability .
The highest ranked fitness predictor is then used to estimate the
fitness of each child and selected to form the next generation.
Finally, the top ranked solution is tested for convergence (de-
scribed in the next section). The algorithm then returns the so-
lution and exits.

The predictor thread begins by randomizing the fitness
predictor and fitness trainer populations. The main loop then

Fig. 2. Pseudocode for the two threads in the algorithm to coevolve solutions
and predictors. Trainers are chosen periodically in the predictor thread.

evolves the predictors and periodically adds new trainers to the
trainer population. Variation is introduced using single point
crossover with probability and mutation with probability .
The fitness of each predictor is calculated by the mean absolute
error between the fitness prediction and the exact fitness for
each fitness trainer.

Lightweight fitness predictors tend to evolve much faster
than the solutions and, therefore, do not require as much com-
putational effort. To reduce computational effort, we artificially
slow evolution of the predictor population by introducing a
delay. If the computational effort (measured in point evalua-
tions1) used to evolve the predictors exceeds some percentage
of the total effort of all populations (5% in our experiments),
the predictor thread is delayed. The specific choice of effort
allocation is likely problem-dependent; however, we have

1Here, and elsewhere in this paper, we measure performance as function of
number of point evaluations, instead of number of generations or number of
fitness evaluations. We use this metric in order to perform fair comparisons be-
tween methods that use different computational efforts per evaluation.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 16, 2008 at 13:18 from IEEE Xplore. Restrictions apply.

740 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 12, NO. 6, DECEMBER 2008

observed that the ratio is robust over a relatively wide range of
values (see Section IV-D).

New fitness trainers are chosen from the solution population
periodically. Fitness trainers are solutions that the fitness pre-
dictors optimize to predict. In our implementation, we choose a
new trainer to add to the trainer population every 100 fitness pre-
dictor population generations. This augmentation of the trainer
population provides time for the fitness predictors to adjust their
approximation and is related to the speed at which predictors
converge. Alternatively, new trainers could be selected contin-
uously, or whenever the progress of the predictor population
slows.

4) Convergence Test: The convergence test determines when
the algorithm should terminate by testing the solution in the cur-
rent population that has the highest predicted fitness. For sym-
bolic regression, we define convergence as having near zero

error on all training data examples. If the best solution
has not converged at this step, a new trainer is added (Fig. 1) and
evolution continues; otherwise, the best solution is returned and
the program terminates. As in any machine learning algorithm,
the final solution performance must be cross-validated against
an unseen test set.

IV. EXPERIMENTS IN SYMBOLIC REGRESSION

We evaluated our proposed approach using symbolic regres-
sion as an example application of fitness predictor coevolution.
Symbolic regression serves as a good benchmark since it is a
well-studied domain with diverse applications.

Symbolic regression is the problem of identifying the ana-
lytical mathematical description of a hidden system from ex-
perimental data [41], [42]. Unlike polynomial regression or re-
lated machine learning methods that also fit data, symbolic re-
gression is a system identification method, which explicates be-
havior. Symbolic regression is closely related to general ma-
chine learning problems however, it remains an open-ended and
discrete problem that cannot be solved greedily.

We first experiment on simple functions, then duplicate
experiments from recently published research, and finally
experiment on thousands of randomly generated symbolic
target functions of increasing complexity. First, however, we
introduce basic concepts of symbolic regression and cover
related research.

A. Symbolic Regression Overview

1) Symbolic Regression Encoding: For experiments in this
paper, we represent functional expressions as a binary tree of
primitive operations [41], [43], [44]. The operations can be
unary operations such as abs, exp, and log, or binary operations
such as add, sub, mult, and div. If some prior knowledge of
the problem is known, the types of operations available can
be chosen ahead of time [41], [42], [45]. The terminal values
available consist of the function’s input variables and the
function’s evolved constant values [46].

Mutation in a symbolic expression can change an operator in
the binary tree (e.g., change add to sub), change the arguments
of an operation (e.g., change to), delete an operation
(e.g., change to), or add an operation (e.g., change
to). If the operator is changed from a binary operation

to a unary operation, for example, one of the two child branches
(chosen randomly) is discarded.

Crossover of a symbolic expression exchanges subtrees in the
binary trees of two parent expressions. For example, crossing

and could produce a
child . In this example, the leaf node was
exchanged with the term.

The fitness objective of a symbolic regression solution is to
minimize error on the training set [43], [47]–[49]. There are
many ways to measure the error such as squared error, abso-
lute error, log error, etc. Though the choice is not critical to the
optimal solution, different metrics work better on different prob-
lems. For experiments in this paper, we use the mean absolute
error for fitness measurement

where is a candidate solution (algebraic expression), and
are training data input and outputs, and is the total number of
training examples in training data set.

2) Coevolution in Symbolic Regression: Coevolving training
examples is a well-studied approach in symbolic regression
[17], [47]. Past research has competitively coevolved training
examples to exploit errors, an approach similar to boosting
methods in machine learning. Coevolving examples to diversify
solutions and moderate purely competitive pressures have also
been studied.

Very little work, however, has been done in fitness prediction
or modeling in symbolic regression. In our experimentation, we
coevolve a subset of the total training data examples that ap-
proximates fitness measurement over the complete training data.
The set’s objective is to guide evolution as closely as possible
to using the entire training set, but at a reduced computational
cost.

B. Subsample Fitness Predictors

1) Fitness Predictor Encoding: Training data in symbolic
regression typically consists of hundreds to thousands of data
points (e.g., experimental measurements) providing output
values for a sample of inputs. In our symbolic regression ex-
periments, the fitness predictor is a small subset of these points.
Instead of measuring the exact objective fitness of candidate
solutions, a subjective fitness is obtained by measuring the error
on the select handful of data points of a given fitness predictor.

The fitness predictor is encoded as a small array of indexes
to the full training data set (size discussed in the next section).
Each index in the predictor’s array is free to reference any points
in the training data examples and can repeatedly sample point if
it likes (thus over emphasizing an area). The predicted fitness is
calculated as

where is a candidate solution (algebraic expression), and
are training data inputs and outputs in the training dataset

indexed by the predictor, and is the number of samples in the
predictor.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 16, 2008 at 13:18 from IEEE Xplore. Restrictions apply.

SCHMIDT AND LIPSON: COEVOLUTION OF FITNESS PREDICTORS 741

Fig. 3. The expected point evaluations before convergence versus the number of samples in the fitness predictor. Error bars show the standard deviation.

Mutation in the fitness predictor can randomize an index in
its array to index a different training point. An example point
mutation would be changing to ,
where the sample 41 switched to 78.

Crossover exchanges the samples of two parent fitness predic-
tors. For our purpose, we use a single point crossover. A random
crossover point is chosen, the first indexes are copied from
the first parent and the remaining indexes are set from the second
parent.

2) Size and Complexity of the Fitness Predictor: There is an
inherent tradeoff between predictor size (subset size) and overall
performance. Using a small number of samples in the fitness
predictor allows for more generations, while maintaining the
same computational effort, at the cost of a less accurate predic-
tion. We empirically examined the sensitivity of the number of
samples in the training subset fitness predictor using an arbitrary
function . This function is a simple nonlinear
function that has two local minima approximations that make
finding the exact solution difficult. In the following sections, we
also use this function as a benchmark for some empirical ex-
perimentation because, although it evolves rapidly, it is clearly
nontrivial.

When the fitness predictor only has two samples, fitness eval-
uations are extremely lightweight but the evolutionary process
requires many more generations, as evident in Fig. 3. The larger
subsets are sufficiently large for accurate modeling but do not
greatly reduce the number of generations needed. Fig. 3 also
suggests that there is some minimum number of samples needed
for a given target function or the available training data. We
hypothesize that the optimal number of samples is higher for
complex functions with more detailed features, but we have yet
to see this number increase dramatically even with high com-
plexity functions (over 30 nodes in the expression tree) as tested
later in this paper.

In our symbolic regression experiments, we use an eight-
sample subset for all experiments. Although it may not be the
optimal choice for all target functions, these results suggest that
it will not have a dramatic impact on final performance. Varying
the number of samples from eight did not appear to have a
strong impact on the performance on several other target func-

Fig. 4. Histogram of training samples selected by the best fitness predictor
during evolution to convergence of � � � ������. Some samples are selected
significantly more often that others.

tions tested, even in the cases of high complexity multivariable
functions involved in ongoing research.

3) Fitness Predictor Behavior: Here, we preview how fit-
ness predictors may behave in symbolic regression. The fitness
predictors used here are small subsets of the training set and
are optimized by trainers chosen from the solution population.
Thus, the types of subsets evolved are determined by how the
solutions evolve and are likely to vary over different problems
and even different runs. However, a few empirical trends can be
seen in this type of fitness predictor.

Fig. 4 shows a histogram of the training points used by the
best fitness predictor up to convergence on the function

. For this run, there are seven highly used training
points which are used in 20% to 40% of generations up to con-
vergence. Notice that the most used points tend to lie to the sides
of local minima and maxima in the training data. This may indi-
cate an effective way to capture features of the dataset without
overestimating the averaged error. In particular, to this function,
these points may be necessary to fine-tune candidate solutions
to match the function’s periodic structure.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 16, 2008 at 13:18 from IEEE Xplore. Restrictions apply.

742 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 12, NO. 6, DECEMBER 2008

Fig. 5. The expected number of point evaluations before convergence versus the effort (percent of point evaluations), while training the fitness predictors averaged
over 50 trials. Error bars show the standard error.

TABLE I
SUMMARY OF THE COMPARED FITNESS PREDICTION STRATEGIES

C. Experiment Settings

For each independent run, all symbolic regression parameters
were held constant, and only the type of predictor was varied.
We used a solution population size of 128, a fitness predictor
population size of 8, and a trainer population size of 10. For evo-
lution, we use deterministic crowding selection [50], 0.1 muta-
tion probability, and 0.5 crossover probability.

The operator set is and the ter-
minal set consists of the input variable and one evolved constant.
In practice, a priori knowledge could be applied to choose a
more useful operator and terminal sets. For example, the ex-
perimenter may not be interested in expressions that use many
evolved constants, or solutions that involve trigonometric func-
tions. However, in our experiments, we use the same param-
eters throughout testing and the terminal and operator sets are
over-representative for all targets (e.g., more operators are avail-
able than needed to regress the function).

D. Computational Effort Distribution Among Populations

For experimental purposes, we control how much effort is
spent training the fitness predictors in relation to the solutions
so that we can compare algorithms based on their total overall
computational effort. Note that in practice, the ratio is not vital
to the algorithm’s performance since each population can be
evolved in parallel.

Fig. 5 shows the impact that the effort ratio has on conver-
gence time with the test function . Ratios in the
range 5%–30% of effort spent training the fitness predictor pop-
ulation all yield approximately optimal convergence time. If fit-
ness predictors are given extremely low computational effort,

overall performance suffers greatly since the fitness approxima-
tion never adapts.

Spending excessive effort training fitness predictors tends to
add no extra benefit. The computational effort increases, but so-
lution generations remain approximately the same. We discuss
specific values for a sample application in Section V.

In summary, the fitness predictors need some minimal
amount of effort so that they are able to adapt with the solu-
tions. Thus, the relative rates of evolution need be considered
before choosing a minimal effort ratio so that they have similar
time-scales. Since fitness predictors are expected to be simple
and lightweight, they should require only a fraction of the effort
that the solutions require.

V. EXPERIMENTAL RESULTS

A. Examining Behavior on Test Problems

Here, we compare four fitness algorithms in symbolic regres-
sion listed in Table I. These algorithms are used as null hy-
potheses to elicit the effect of coevolution.

The static random sample algorithm uses a single fitness ap-
proximation throughout evolution. Eight random samples are
chosen from the training data at run time, and solutions are
evolved using only this sample. This algorithm tests the hypoth-
esis that the performance improvement is made simply from re-
ducing point evaluations.

The dynamic random sample algorithm is similar to the Static
algorithm, but now the sample is rerandomized at every gener-
ation of the solutions. This algorithm tests the hypothesis that
performance improves not only because of reducing point eval-
uations but also because of allowing the sample to change.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 16, 2008 at 13:18 from IEEE Xplore. Restrictions apply.

SCHMIDT AND LIPSON: COEVOLUTION OF FITNESS PREDICTORS 743

Fig. 6. The training data of the three target functions experimented on. The horizontal axis shows the input values �. The vertical axis shows the output training
value ����.

Fig. 7. The test set fitness during evolution for target functions � ���, � ���,
and � ���, respectively. Results are averaged over 50 trials. Error bars show the
standard error.

The exact fitness algorithm is given for the purpose of base-
line comparison. The solutions are evolved using the exact ob-
jective fitness, as is usually practiced in symbolic regression re-
search [43], [47]–[49].

In this section, we test on three different target functions that
elicit different behaviors from the four algorithms. The training
data, shown in Fig. 6, are 200 evenly spaced samples of the
target function. The test set contains 200 additional random
samples. Each experiment is repeated 50 times independently,
and the fitness for each run is recorded over evolutionary time.

The performances on these three functions for each algorithm
are shown versus the number of point evaluations in Fig. 7.

The polynomial function is very simple and coevolu-
tion, static random, and exact fitness all rapidly converge. The
coevolution and static random methods make similar improve-
ments over exact fitness, suggesting that the improvement is
chiefly due to the reduction in function evaluations.

Behavior on is different however. The static and dy-
namic random sample algorithms perform very poorly on av-
erage, and the exact fitness algorithm outperforms them. How-
ever, coevolution still makes a substantial improvement over
exact fitness.

In contrast, function gives an example in which the dy-
namic random sample performs very well. It is able to find the
large features of the function as quickly as coevolution; how-
ever, it fails on the final sine feature.

We can make several conclusions from these results. First, the
static random sample shows performance can be improved on a
simple function like simply by using a small subset for
fitness calculation. On more complicated functions, however, a
small constant subset alone cannot adequately represent features
of more complicated functions like or .

Conversely, the dynamic random sample algorithm can
greatly improve performance on some more complicated func-
tions such as . Using a sample that changes randomly
can accelerate finding large features of the data but may fail on
simple features as in , , or the sine term in .

For these basic test cases, coevolution performs the best in
each case. We can reject the hypotheses that the performance
improvement is due only to using a subsample or a randomly
changing subsample. Thus, the effect of coevolution must play
an important role.

Later in this paper, we compare the convergence rates of these
algorithms over randomly generated functions to observe more
general trends.

B. Comparison to Previously Published Methods

In this section, we compare the coevolution algorithm
with four recently published symbolic regression techniques:
Stepwise Adaptive Weights (SAWs) [43], Grammar Guided
Genetic Programming (GGGP) [48], Tree-Adjunct Grammar
Guided Genetic Programming (TAG3P) [48], Coevolution With
Tractable Shared Fitness [47], Distinction Fitness [47], and
Random Sampling [47]. We did not reimplement these algo-
rithms. Instead, we ran our algorithm on the same test problems
reported in the original papers, using the same convergence
criteria used in the original paper.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 16, 2008 at 13:18 from IEEE Xplore. Restrictions apply.

744 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 12, NO. 6, DECEMBER 2008

TABLE II
PERFORMANCE COMPARISON TO PUBLISHED METHODS

We compare computational performance based on point eval-
uations, defined by the total number of times the output of any
symbolic expression is evaluated. The coevolution algorithm is
stopped based on the number of point evaluations that the com-
pared algorithm made during each experiment. In the compared
algorithms, we assume that each individual’s fitness is measured
every generation. Likewise, we force the coevolution algorithm
to calculate fitness for every generation, even though different
selection algorithms do not require it.

Many of these experiments are on simple functions but are
stopped at a very low number of point evaluations. Thus, finding
the target function quickly is the highest priority. The cosine
identity and the Gaussian function experiments are noticeably
more challenging to regress based on parameters specific to
these experiments.

Qualitative improvements in Table II are shown in bold text.
The coevolution algorithm has slightly higher convergence than
the PSAW and GGGP algorithms on polynomial problems. The
TAG3P algorithm performs the best on simple polynomials;
however, there is a qualitative difference when applied to a
harder problem: regressing the double angle cosine identity.
Coevolution makes a 40% improvement in convergence for
the trigonometric identity experiment. The comparison with
coevolved tractable, shared, and random sampling algorithms
show coevolution can make substantial improvements in re-
gressing a Gaussian function, traditionally a very challenging
problem for symbolic regression in which over 90% of the data
points are past the fringe [12].

Next, we make an empirical comparison with fitness inheri-
tance [34]–[36]. As mentioned in Section II-B2, fitness inher-
itance is a fitness prediction approach that evaluates exact fit-
nesses for a fraction of the population and allows the inheritance
of fitness values during crossover for remaining individuals. We

Fig. 8. Test set fitness versus evaluations averaged over 100 test runs for � ���.
Error bars show standard error.

implemented fitness inheritance in symbolic regression by tag-
ging 10%, 25%, and 50% of individuals each generation to use
exact fitness calculations and the rest to use their inherited fit-
ness (or last exact fitness).

Fig. 8 compares performance by the computational effort.
In this experiment, runs were stopped after 20 000 generations.
Exact fitness and fitness inheritance use more point evaluations
and, therefore, show more data points on the plot.

Fitness inheritance appears to behave very similarly to the
exact fitness algorithm in symbolic regression. Using 50% exact
evaluations in fitness inheritance does accelerate over exact fit-
ness on several runs; however, further attempts to reduce evalu-
ations worsen the average performance.

This result is consistent with other work involving fitness in-
heritance. In related work [21], the authors conclude that 50%
of fitness evaluations need to be based on exact fitness to ensure
reliable convergence. In contrast, fitness prediction distributes a
small fraction of point evaluations to estimate the fitness of all
individuals in every generation, the equivalent of roughly 5%
full evaluations per generation in this experiment. This demon-
strates that a compromise between exact fitness evaluations and
approximated fitnesses can yield performance increases with
similar convergence rates.

C. Testing Scalability Using Randomly Generated Symbolic
Functions

The experiment presented in this section explores the be-
havior of the coevolution algorithm when solving for randomly
generated functions of varying complexity.

We generate random target functions by building a random bi-
nary tree of operations. We then perform a rough simplification
by systematically pruning combinations of nodes in the func-
tion’s binary tree and then testing for a significant change in
the functions’ outputs (see Appendix A). Next, the function is
evenly sampled 100 times over the range to generate the
training data and then randomly sampled to produce the test set.

We define the “complexity” in this experiment to be the
number of nodes in the generating target function. Examples of
randomly generated functions and their respective complexities
are shown in Table III.

We generate 5000 random target functions for this experi-
ment in order to produce training and test datasets of various
complexities. Functions are uniformly spaced on odd-numbered

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 16, 2008 at 13:18 from IEEE Xplore. Restrictions apply.

SCHMIDT AND LIPSON: COEVOLUTION OF FITNESS PREDICTORS 745

Fig. 10. Improvement factor in convergence of coevolution over the other algorithms versus complexity for random target functions.

TABLE III
EXAMPLES OF RANDOMLY GENERATED FUNCTIONS AND THEIR COMPLEXITIES

Fig. 9. The percent of successful convergence after 10 M point evaluations
versus the target function complexity (the number of nodes in the binary ex-
pression tree).

complexities from 1–40. This yields approximately 150 random
trials of complexity.

The four fitness algorithms described in the first experiment
were tested on the randomly generated target symbolic func-
tions. For each run, all algorithms were initialized with the same
initial populations and control parameters. We used the same ex-
perimental setup and controls as in the previous experiments.

Each run is stopped after 10 million function evaluations.
Then, the best individual is tested for a perfect fit to the test
data, and a tally of the successful convergences is recorded for
each complexity. The percent of successful convergences versus
complexity for each alternative algorithm is plotted in Fig. 9.

We have performed a chi-square statistical test between co-
evolution and each algorithm. The difference in convergence is

found to be statistically significant for all complexi-
ties between 9 and 37. More samples at higher complexities are
needed to conclude the significance at 37 (see Appendix B).

We see that all algorithms have a very high probability of suc-
cess for simple functions. Furthermore, all algorithms experi-
ence a drop in success with an increase in the complexity of the
function, but at different rates.

The coevolution algorithm has the highest success rate in gen-
eral. It maintains a 5%–10% higher convergence rate over the
other fitness algorithms involving the 11 to 27 complexity func-
tions. Most notably, coevolution maintains a 1%–4% advantage
over the 29 to 37 complexities, where the other algorithms have
0%–3% successful convergence overall.

The static and dynamic fitness approximation algorithms
perform significantly better in comparison to the exact fitness
algorithm with the 9 to 37 complexity functions. In the previous
experiment, we saw that the exact fitness algorithm achieves
higher fitnesses, but here we are only measuring convergence,
and the fitness prediction algorithms converge significantly
more on average over random functions. The exact fitness al-
gorithm achieves many fewer generations for the same number
of point evaluations and may simply be lacking some amount
of exploration from crossovers and mutations to converge on
the final solution.

Next, we look at the improvement factor in order to compare
coevolution pairwise with the other three approaches. The im-
provement factor is the ratio of convergence of coevolution to
the compared algorithm, over complexity

An improvement factor of one indicates the two algorithms
have the same performance. A factor of less than one indicates
that coevolution performed worse. Greater than one indicates
coevolution performed better. For example, a factor of two
indicates coevolution had twice the convergence at a given
complexity.

Though all algorithms decrease in convergence with in-
creasing complexity functions (Fig. 9), the improvement factor
for coevolution tends to increase (Fig. 10). Statistical testing
(see Appendix B) demonstrates this growth as significant for
complexities 11 and higher. Based on this observation, we con-
clude that coevolution may offer greater tolerance to growing
complexity.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 16, 2008 at 13:18 from IEEE Xplore. Restrictions apply.

746 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 12, NO. 6, DECEMBER 2008

Fig. 11. Fitness and percent of runs converged versus generations throughout evolution on the function � ���. Error bars show the standard error. Note that exact
evaluations are performing significantly more computational effort per generation.

VI. IMPROVING SOLUTION RELIABILITY

One important effect of fitness prediction is the adaptation of
fitness pressures, which causes the evolutionary focus to change
throughout evolution. In this section, we examine how this ef-
fect impacts the solutions found by comparing performance by
generation, rather than computational effort. We also examine
the difference in solution bloat when using coevolved fitness
predictors.

A. Comparing Performance by Generation

We measure the fitness and convergence of 100 runs versus
the number of generations (not point evaluations as before).
Note that in our previous experiments, coevolution achieves
many more generations with the same number of point evalua-
tions (computational effort) by utilizing the fitness predictor.

The experiment is identical to the previous experiments; how-
ever, we run the exact-fitness algorithm out to billions of point
evaluations so that we can compare performance based on the
number of generations rather than the amount of computational
effort.

Fig. 11 shows the performance of each algorithm over 20 000
generations, while regressing . This is sufficiently long for
both algorithms to achieve 90% convergence or higher.

The exact fitness algorithm starts with a clear lead over co-
evolution in both fitness and convergence in early generations.
However, at approximately 4000 generations, coevolution be-
gins to dominate the exact fitness algorithm over the averaged
100 test runs.

This empirical result on suggests that coevolution out-
performs the use of exact fitness measurements even when ig-
noring the high cost of exact fitnesses. There are several possible
explanations for this. Fitness approximation can drive solutions
to unexplored areas of the domain [25], [51], perhaps increasing
convergence. Additionally, adapting the fitness approximation
can destabilize local optima solutions, as also noted earlier [3],
[17]. When individuals converge to local optima in the fitness
predictor, predictors react to approximate the region more accu-
rately. The better the local optima solutions are, the more stable
they will be during the predictor transition. Since the predic-
tions shift data point emphasis, the improvement may also be

Fig. 12. The size of the best solution during evolution of � ��� averaged over
100 test runs. Error bars show the standard error.

related machine learning techniques, such as boosting or adap-
tive weighting. Although this behavior may be an important ad-
vantage of coevolved predictors, understanding it is beyond the
scope of this paper.

B. Reducing Bloat

A challenging problem in many genetic programming do-
mains is dealing with bloat. Bloated solutions are those that are
excessively complicated. In relation to machine learning, bloat
can be thought of as “overfitting,” in which solutions evolve
complex structures that do not exist in the real system.

Bloat can also be problematic in symbolic regression. Fig. 12
shows the size of the best solution during evolution on
averaged over 100 test runs. Function is a very simple
nonlinear target function that has two difficult local optima. This
is a good first example because the local optima may cause extra
bloat during evolution. Later, we compare bloat on randomly
generated functions.

In this instance, size, defined as the number of nodes on the
binary tree, is synonymous with the complexity metric used
earlier.

On average, coevolution maintains significantly less complex
solutions during evolution than the algorithm using exact fitness

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 16, 2008 at 13:18 from IEEE Xplore. Restrictions apply.

SCHMIDT AND LIPSON: COEVOLUTION OF FITNESS PREDICTORS 747

Fig. 13. The bloat of final converged solutions averaged over 500 randomly
generated target functions. Error bars show the standard error.

Fig. 14. Function simplification pseudocode.

calculations. The exact fitness solutions balloon near 5000 gen-
erations, while coevolution experiences solution sizes that are
both lower and more consistent.

This preliminary result from suggests fitness prediction
is less susceptible to bloat. To get an idea if this could be a
general trend, we compared solution sizes of both algorithms
on randomly generated target functions where both algorithms
are allowed to fully converge.

Fig. 13 shows the bloat of final solutions of both algorithms
on 500 randomly generated target functions. Coevolution yields
less bloated solutions on average for randomly generated func-
tions as well. Here, we define bloat as the solution size minus
the target function size. Each algorithm is tested on the same
target functions and only target functions in which both algo-
rithms converged are considered. Note that bloat reduction can

Fig. 15. Chi-square significance of convergence verses complexity.

TABLE IV
CHI-SQUARE SIGNIFICANCE OF CONVERGENCE RATES

also improve computational performance per point evaluation,
since smaller expressions can be evaluated faster.

Coevolutionary bloat reduction is an important observation
for this paper, but deeper analysis is beyond the current scope.
One hypothesis is that the fitness landscape imposed by fitness
prediction is simpler and, therefore, inherently biased towards
simpler solutions. In the case of a subset predictor as used here,
the sample is less likely to encompass fine detail in training data
features, thereby reducing pressure to explain detail or noise

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 16, 2008 at 13:18 from IEEE Xplore. Restrictions apply.

748 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 12, NO. 6, DECEMBER 2008

features until the solutions have converged on the larger trends
first. However, we leave deeper analysis to future work.

VII. CONCLUSION

In this paper, we have proposed coevolution to address three
fundamental challenges faced when using fitness prediction
in evolutionary algorithms: 1) the model training investment;
2) choosing a level of approximation; and 3) loss of accuracy.
The coevolutionary framework uses three populations: Problem
solutions, fitness predictors, and fitness trainers. Solutions
evolve to maximize their predicted fitness, fitness trainers are
selected to cause the most inconsistencies between fitness
predictors, and finally, fitness predictors evolve to minimize
error in predicting the fitness trainers.

For the problem of symbolic regression, we have shown the
following advantages.

Computational performance improvement: Coevolu-
tion provides substantial performance improvement over
exact fitness, random sample, and dynamic sample fitness
algorithms. On simple manually designed test problems,
coevolution achieves higher average fitnesses and more
reliable convergence with significantly less computational
effort in each case. Coevolution also performs competi-
tively with other recently published symbolic regression
methods. In these experiments, coevolution achieves sig-
nificantly higher convergence on challenging experiments
such as trigonometric derivations and has a similar perfor-
mance on simple experiments such as polynomial targets.

Scaling. In experimentation on randomly generated
benchmarks, coevolution shows higher performance
over all solution complexities tested. The factor of im-
provement increases as complexity rises.
Performance by generation. Empirical results show
that coevolving fitness predictors can yield higher
fitness solutions compared with the exact fitness
algorithm even when disregarding savings in compu-
tational effort. This suggests that the transformation
of the fitness landscape is in itself beneficial.
Bloat reduction. Empirical results suggest that, on av-
erage, coevolution yields less bloated solutions for ran-
domly generated target functions.

Finally, fitness prediction is a technique that can be applied
in many domains and general problems. Certain problems that
have traditionally been poorly suited for fitness approximation
(e.g., symbolic regression) or coevolution could benefit from
this coevolutionary approach—such as increasing computa-
tional performance, scaling to higher complexity problems,
improving convergence, and reducing bloat.

In future work, we are interested in the further exploration
of the effects on bloat reduction and reliability in convergence
improvements. More specifically, we want to examine the rela-
tionship between convergence to local optima and how quickly
the fitness approximation varies.

APPENDIX

Random Symbolic Function Generator: We generated
random target functions by building a random tree of opera-
tions. The tree is binary, with the exception of unary operators

which only have a single child. We then prune combinations
of nodes in the function’s tree that result in less than
change in function output across a target range (in our
case), using the code below. We define the complexity of the
resulting function as the number of nodes in the pruned tree.
Example randomly generated functions and their respective
complexities are shown in Table III.

Convergence and Complexity Statistical Significance:
Section V-C shows the convergence rate (%) versus the com-
plexity (the number of nodes in the binary expression tree) for
randomly generated target functions. The coevolution algo-
rithm shows higher convergence for complexities over nine.

Here, we measure the statistical significance between the con-
vergence rates using the Chi-Square Test. The Chi-Square Test
compares the number of converged runs and nonconverged runs
of two algorithms in a contingency table. The returned p-value
is the probability that the difference could be due to random
chance. The chi-square p-values comparing coevolution with
each other algorithm are listed in Table IV

A chi-square p is shown to indicate statistical
significance. At low complexities, all algorithms have 100%
convergence and have no statistical difference. The p-values for
higher complexities show that coevolution has statistically sig-
nificant higher convergence than the other three algorithms com-
pared. More samples are needed to show significance at com-
plexities 37 and higher.

REFERENCES

[1] Y. S. Ong, P. B. Nair, and A. J. Keane, “Evolutionary optimization
of computationally expensive problems via surrogate modeling,” AIAA
Journal, vol. 41, pp. 687–96, 2003.

[2] Y. Jin, M. Olhofer, and B. Sendhoff, “Managing approximate models
in evolutionary aerodynamic design optimization,” in Proc. 2001 Cong.
Evol. Comput., 2001, pp. 592–599.

[3] Y. Jin, “A comprehensive survey of fitness approximation in evolu-
tionary computation,” Soft Computing Journal, vol. 9, pp. 3–12, 2005.

[4] W. D. Hillis, “Co-evolving parasites improve simulated evolution as an
optimization procedure,” Artif. Life II, vol. X, pp. 313–324, 1992.

[5] S. G. Ficici, “Solution concepts in coevolutionary algorithms,” in
Comput. Sci.. Waltham, MA: Brandeis Univ., 2004.

[6] S. G. Ficici and J. B. Pollack, “Pareto optimality in coevolutionary
learning,” in Proc. 6th Eur. Conf. Advances in Artif. Life, 2001, pp.
316–325.

[7] E. D. D. Jong and J. B. Pollack, “Ideal evaluation from coevolution,”
Evol. Comput., vol. 12, pp. 159–192, 2004.

[8] M. A. Potter and K. A. D. Jong, “Cooperative coevolution: An archi-
tecture for evolving coadapted subcomponents,” Evol. Comput., vol. 8,
pp. 1–29, 2000.

[9] C. D. Rosin, Coevolutionary Search Among Adversaries. San Diego,
CA: Univ. California, 1997.

[10] C. D. Rosin and R. K. Belew, “New methods for competitive coevolu-
tion,” Evol. Comput., vol. 5, pp. 1–29, 1997.

[11] M. D. Schmidt and H. Lipson, “Actively probing and modeling users
in interactive coevolution,” in Proc. Genetic and Evol. Comput. Conf.,
Seattle, WA, 2006, pp. 385–386.

[12] K. O. Stanley and R. Miikkulainen, “Competitive coevolution through
evolutionary complexification,” J. Artif. Intell. Res., vol. 21, pp.
63–100, 2004.

[13] V. Zykov, J. Bongard, and H. Lipson, “Co-evolutionary variance can
guide physical testing in evolutionary system identification,” in Proc.
Evolvable Hardware, 2005, pp. 213–213.

[14] A. Bucci and J. B. Pollack, “On identifying global optima in cooper-
ative coevolution,” in Proc. Genetic and Evol. Comput. Conf., Wash-
ington, DC, 2005, pp. 539–544.

[15] D. Cliff and G. F. Miller, “Tracking the red queen: Measurements of
adaptive progress in co-evolutionary simulations,” in Proc. 3rd Eur.
Conf. Advances Artif. Life, 1995, pp. 200–218.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 16, 2008 at 13:18 from IEEE Xplore. Restrictions apply.

SCHMIDT AND LIPSON: COEVOLUTION OF FITNESS PREDICTORS 749

[16] S. Luke and R. P. Wiegand, “When coevolutionary algorithms ex-
hibit evolutionary dynamics,” in Proc. 2003 Workshop Genetic Evol.
Comput. Conf., 2002, pp. 236–241.

[17] L. Pagie and P. Hogeweg, “Evolutionary consequences of coevolving
targets,” Evol. Comput., vol. 5, pp. 401–418, 1997.

[18] R. A. Watson and J. B. Pollack, “Coevolutionary dynamics in a minimal
substrate,” in Proc. Genetic Evol. Comput. Conf., 2001, pp. 702–709.

[19] J. C. Bongard and H. Lipson, “Nonlinear system identification using
coevolution of models and tests,” IEEE Trans. Evol. Comput., vol. 9,
pp. 361–384, 2005.

[20] J. C. Bongard and H. Lipson, “’Managed challenge’ alleviates disen-
gagement in co-evolutionary system identification,” in Proc. Genetic
Evol. Comput. Conf., Washington, DC, 2005, pp. 531–538.

[21] Y. Jin, M. Olhofer, and B. Sendhoff, “A framework for evolutionary
optimization with approximate fitness functions,” IEEE Trans. Evol.
Comput., vol. 6, pp. 481–494, 2002.

[22] Y. Jin and B. Sendhoff, “Reducing fitness evaluations using clustering
techniques and neural network ensembles,” in Proc. Genetic Evol.
Comput. Conf., 2004, pp. 688–699.

[23] A. Mutoh, T. Nakamura, S. Kato, and H. Itoh, “Reducing execution
time on genetic algorithm in real-world applications using fitness pre-
diction: Parameter optimization of SRM control,” in Proc. 2003 Congr.
Evol. Comput., Canberra, ACT, Australia, 2003, pp. 552–9.

[24] R. G. Regis and C. A. Shoemaker, “Local function approximation in
evolutionary algorithms for the optimization of costly functions,” IEEE
Trans. Evol. Comput., vol. 8, pp. 490–505, 2004.

[25] R. G. Regis and C. A. Shoemaker, “Constrained global optimization of
expensive black box functions using radial basis functions,” J. Global
Optimization, vol. 31, pp. 153–171, 2005.

[26] H. Takagi, “Interactive Evol. Comput.: Fusion of the capabilities of
EC optimization and human evaluation,” Proc. IEEE, vol. 89, pp.
1275–1296, 2001.

[27] B. Johanson and R. Poli, “GP-music: An interactive genetic program-
ming system for music generation with automated fitness raters,” in
Proc. 3rd Ann. Conf. Genetic Programming, Madison, WI, 1998, pp.
181–186.

[28] R. Poli and S. Cagnoni, “Genetic programming with user-driven
selection: Experiments on the evolution of algorithms for image
enhancement,” in Proc. 2nd Ann. Conf. Genetic Programming, 1997,
pp. 269–277.

[29] D. V. Arnold, “Evolution strategies in noisy environments- a survey of
existing work,” in Theoretical Aspects of Evolutionary Computing.
Berlin, Germany: Springer-Verlag, 2001, pp. 239–250.

[30] Y. Sano and H. Kita, “Optimization of noisy fitness functions by means
of genetic algorithms using history of search,” in Proc. 6th Int. Conf.
Parallel Problem Solving from Nature, Paris, France, 2000, pp. 571–80.

[31] C. Audet, J. J. E. Dennis, D. W. Moore, A. Booker, and P. D. Frank,
“Surrogate-Model-Based method for constrained optimization,” in
Proc. AIAA/USAF/NASA/ISSMO Symp. Multidisciplinary Anal. Opt.,
2000, Paper No. AIAA-2000-4891.

[32] D. Yang and S. J. Flockton, “Evolutionary algorithms with a
coarse-to-fine function smoothing,” in Proc. IEEE Int. Conf. Evol.
Comput., Perth, WA, Australia, 1995, pp. 657–62.

[33] L. A. Albert and D. E. Goldberg, “Efficient discretization scheduling
in multiple dimensions,” in Proc. Genetic Evol. Comput. Conf., 2002,
pp. 271–278.

[34] J.-H. Chen, D. E. Goldberg, S.-Y. Ho, and K. Sastry, “Fitness inheri-
tance in multi-objective optimization,” in Proc. Genetic Evol. Comput.
Conf., 2002, pp. 319–326.

[35] R. E. Smith, B. A. Dike, and S. A. Stegmann, “Fitness inheritance in
genetic algorithms,” in Proc. ACM Symp. Appl. Comput., Nashville,
TN, 1995, pp. 345–350.

[36] K. Sastry, D. E. Goldberg, and M. Pelikan, “Don’t evaluate, inherit,” in
Proc. Genetic Evol. Comput. Conf., 2001, pp. 551–558.

[37] P. Larrañaga and J. A. Lozano, Estimation of Distribution Algorithms:
A New Tool for Evolutionary Computation. Norwell, MA: Kluwer,
2002.

[38] M. Pelikan and K. Sastry, “Fitness inheritance in the Bayesian opti-
mization algorithm,” in Proc. Genetic Evol. Comput. Conf., Seattle,
WA, 2004, pp. 48–59.

[39] A. Ochoa and M. R. O. Soto, “Partial evaluation of genetic algorithms,”
in Proc. 1st Artif. Intell. Symp., Havana, Cuba, 1997, pp. 29–35.

[40] Y. Jin and J. Branke, “Evolutionary optimization in uncertain envi-
ronments-A survey,” IEEE Trans. Evol. Comput., vol. 9, pp. 303–317,
2005.

[41] D. A. Augusto and H. J. C. Barbosa, “Symbolic regression via ge-
netic programming,” in Proc. VI Brazilian Symp. Neural Networks
(SBRN’00), Rio de Janeiro, RJ, Brazil, 2000, pp. 173–173.

[42] J. Duffy and J. Engle-Warnick, “Using symbolic regression to infer
strategies from experimental data,” Evol. Comput. Econ. Finance, vol.
100, pp. 61–84, 2002.

[43] J. Eggermont and J. I. v. Hemert, “Stepwise adaptation of weights
for symbolic regression with genetic programming,” in Proc. 12th
Belgium/Netherlands Conf. Artif. Intell. (BNAIC’00), Kaatsheuvel, De
Efteling, Holland, 2000, pp. 259–266.

[44] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[45] T. Soule and R. B. Heckendorn, “Function sets in genetic program-
ming,” in Proc. Genetic Evol. Comput. Conf., San Francisco, CA, 2001,
pp. 190–190.

[46] C. Ferreira, “Function finding and the creation of numerical constants
in gene expression programming,” in Proc. 7th Online World Conf. Soft
Comput. Industrial Applications, 2002.

[47] B. Dolin, F. H. Bennett, III, and E. G. Rieffel, “Co-evolving an
effective fitness sample: Experiments in symbolic regression and
distributed robot control,” in Proc. 2002 ACM Symp. Appl. Comput.,
Madrid, Spain, 2002, pp. 553–559.

[48] N. X. Hoai, R. I. McKay, D. Essam, and R. Chau, “Solving the sym-
bolic regression problem with tree-adjunct grammar guided genetic
programming: The comparative results,” in Proc. 2002 Congr. Evol.
Comput., 2002, pp. 1326–1331.

[49] M. Keijzer, “Improving symbolic regression with interval arithmetic
and linear scaling,” in Proc. Genetic Programming, EuroGP’2003,
Essex, 2003, pp. 70–82.

[50] S. W. Mahfoud, Niching Methods for Genetic Algorithms. Urbana,
IL: Univ. Illinois at Urbana–Champaign, 1995.

[51] A. J. Booker, J. E. Dennis, Jr, P. D. Frank, D. B. Serafini, V. Torczon,
and M. W. Trosset, “A rigorous framework for optimization of expen-
sive functions by surrogates,” Structural Opt., vol. 17, pp. 1–13, 1999.

Michael D. Schmidt received the B.Sc. degree in
electrical and computer engineering and the M.E.
degree in computer science from Cornell University,
Ithaca, NY, in 2005 and 2006, respectively. He
is currently working towards the Ph.D. degree at
Cornell University.

His research interests focus on analytical modeling
of complex systems, particularly, biological systems
at the cellular and cellular network level, to under-
stand how biological systems function and gain in-
sight into why they have emerged in nature.

Hod Lipson (M’98) received the B.Sc. degree in
mechanical engineering and the Ph.D. degree in
mechanical engineering in computer-aided design
and artificial intelligence in design from the Tech-
nion-Israel Institute of Technology, Haifa, Israel, in
1989 and 1998, respectively.

He is currently an Associate Professor at the Me-
chanical and Aerospace Engineering and Computing
and Information Science Schools, Cornell University,
Ithaca, NY. Prior to this appointment, he was a Post-
doctoral Researcher at the Departmen of Computer

Science, Brandeis University, and a Lecturer at the Department of Mechanical
Engineering, Massachusetts Institute of Technology, Cambridge, where he con-
ducted research in design automation. His research interests focus on compu-
tational methods for synthesizing complex systems out of elementary building
blocks and the application of such methods to design automation and their im-
plication to understanding the evolution of complexity in nature and in engi-
neering.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 16, 2008 at 13:18 from IEEE Xplore. Restrictions apply.

