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Complex nonlinear dynamics arise in many fields of science and
engineering, but uncovering the underlying differential equations
directly from observations poses a challenging task. The ability to
symbolically model complex networked systems is key to under-
standing them, an open problem in many disciplines. Here we
introduce for the first time a method that can automatically
generate symbolic equations for a nonlinear coupled dynamical
system directly from time series data. This method is applicable to
any system that can be described using sets of ordinary nonlinear
differential equations, and assumes that the (possibly noisy) time
series of all variables are observable. Previous automated symbolic
modeling approaches of coupled physical systems produced linear
models or required a nonlinear model to be provided manually. The
advance presented here is made possible by allowing the method
to model each (possibly coupled) variable separately, intelligently
perturbing and destabilizing the system to extract its less observ-
able characteristics, and automatically simplifying the equations
during modeling. We demonstrate this method on four simulated
and two real systems spanning mechanics, ecology, and systems
biology. Unlike numerical models, symbolic models have explan-
atory value, suggesting that automated ‘‘reverse engineering’’
approaches for model-free symbolic nonlinear system identifica-
tion may play an increasing role in our ability to understand
progressively more complex systems in the future.

coevolution � modeling � symbolic identification

Many branches of science and engineering represent systems
that change over time as sets of differential equations, in

which each equation describes the rate of change of a single variable
as a function of the state of other variables. The structures of these
equations are usually determined by hand from first principles, and
in some cases regression methods (1–3) are used to identify the
parameters of these equations. Nonparametric methods that as-
sume linearity (4) or produce numerical models (5, 6) fail to reveal
the full internal structure of complex systems. A key challenge,
however, is to uncover the governing equations automatically
merely by perturbing and then observing the system in intelligent
ways, just as a scientist would do in the presence of an experimental
system. Obstacles to achieving this lay in the lack of efficient
methods to search the space of symbolic equations and in assuming
that precollected data are supplied to the modeling process.

Determining the symbolic structure of the governing dynamics of
an unknown system is especially challenging when rare yet infor-
mative behavior can go unnoticed unless the system is perturbed in
very specific ways. Coarse parameter sweeps or random samplings
are unlikely to catch these subtleties, and so passive machine
learning methods that rely on offline analysis of precollected data
may be ineffective. Instead, active learning (7) processes that are
able to generate new perturbations or seek out informative parts of
a data set based on internally generated hypotheses may be able to
better track down these important hidden system characteristics.

Here we introduce a method for automatically synthesizing both
the structure and the parameters of ordinary differential equations
from a hidden coupled nonlinear system, given either the ability to
selectively perturb the system or selectively sample from noisy data
produced by it. The method is composed of two processes: The first

synthesizes multiple models from basic operators and operands to
explain observed behavior (Fig. 1, step b). The second process
synthesizes new sets of initial conditions (new ‘‘tests’’) that induce
maximal disagreement in the predictions of the candidate models
(Fig. 1, step c). The best of these tests is then used to extract new
behavior from the hidden system (Fig. 1, step a). This alternating
cycle continues until some termination criterion is met.

Partitioning, Automated Probing and Snipping
A number of methods have been previously proposed for symbolic
regression of nonlinear systems, but were limited to producing
linear models (4) or were applied to systems composed of one or
a few interacting variables (8–16). Here we introduce a scalable
approach for automated symbolic regression, made possible by
three advances introduced here: partitioning, in which equations
describing each variable of the system can be synthesized separately,
thereby significantly reducing the search space; automated probing,
which automates experimentation in addition to modeling, leading
to an automated ‘‘scientific process’’ (17–20); and snipping, an
‘‘Occam’s Razor’’ process that automatically simplifies and restruc-
tures models as they are synthesized to increase their accuracy, to
accelerate their evaluation, and to render them more parsimonious
and human-comprehensible. We describe these three components
and validate their performance on a number of simulated and real
dynamical systems.

Partitioning. Partitioning allows the algorithm to synthesize equa-
tions describing each variable separately, even though their behav-
iors may be coupled. Stochastic optimization (21–24) is used for
synthesizing the equations, as it is well suited for searching open-
ended spaces composed of building blocks. Bayesian networks,
although popular, cannot model mutual dependencies (cycles)
between variables (25), a pattern often encountered in biological
and other regulation (feedback) networks and fundamental to their
operation (26). Indeed, modeling of networks with many interde-
pendencies has been identified as a research priority across the
sciences (27, 28). When using partitioning, rather than integrate
candidate equations for all variables together, a candidate equation
for a single variable is integrated by substituting references to other
variables with data from the system’s observed behavior (see
Methods). This allows us to infer the structure of systems comprising
more variables and higher degree of coupling than were inferred by
other methods (4, 8–16) [see supporting information (SI) Table 4].

Automated Probing. Automated probing transforms a passive mod-
eling algorithm into an active participant in the discovery process.
Rather than passively accepting data from the system under study,
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the automatically synthesized models are used to create a test
tailored to disprove as many of the models as possible. In this work,
a test is considered to be a set of initial values for all of the variables
comprising the system: For example, when inferring equations
describing the single pendulum (Tables 1 and 3), a test is a set of
desired initial values of the pendulum arm’s angle and angular
velocity. Because a new, information-extracting test cannot be
derived from this model set or from the system’s behavior analyt-
ically, candidate tests are optimized to maximize disagreement
across the predictions of the models when supplied with these initial
conditions. The best test, after a fixed period of optimization, is then
either executed on the system and the resulting behavior recorded,
or previously provided data are scanned to find the time step at
which the variable values most closely match this test. The following
time interval is then extracted and provided to the modeling
process. The additional results tend to induce reoptimization of the
current model set into a new set. This alternating cycle of modeling
and testing continues for a fixed period (Fig. 1).

Snipping. Snipping automatically simplifies and restructures models
during optimization. Model optimization occurs by starting the
algorithm with a random set of models; calculating the errors of the
models against all of the system data observed so far; creating
copies of each of the existing models and introducing small, random
changes into the copies; evaluating the new models; and replacing
those models that are less accurate with their modified, more
accurate copies. In this work, models are represented as sets of
equations, and equations are represented as nested subexpressions.
In many trials, it was observed that these expressions grow very
large, but that many of the subexpressions would return values
within narrow ranges during evaluation. This is a symptom of
overfitting (29, 30), often referred to as bloat (31) in the literature
dealing with nested expression-based methods (22): models spe-
cialize to explain the observed data, but explain additional unseen

data poorly. With snipping enabled, when a new model is created
from an older one, subexpressions in the new model are occasion-
ally replaced by a constant chosen uniformly from the range formed
by the minimum and maximum values output by the corresponding
subexpression in the original model. This process tends to yield
more accurate and simpler models, making them more human-
readable.

Table 2. Inference of a biological network from real data

Algorithm 1 Algorithm 2

Common form dh�dt � ���h��l dl�dt����h��l
Means and standard

deviations
Control � � 1.85�106�6.49�105 � � 1.51�105 � 1.65�105

Full algorithm � � �46.31 � 12.55 � � 26.48 � 3.27
� � �11.18 � 17.48 � � �50.53 � 7.02

Means and standard
deviations � � 3.42�106�1.56�106 � � 3.10�105 � 2.34 � 105

Control � � �67.82 � 45.62 � � 32.66 � 4.06
Full algorithm � � �10.97 � 52.24 � � �63.16 � 5.63

A control algorithm (which fully samples the data set) and the full algorithm
(which uses automated sampling of the data set) were both run on historical
data reporting approximated populations of snowshoe hare (h) and Canadian
lynx (l) (36). Thirty independent trials of both algorithms were performed, and
thebestmodel (with lowesterroragainstallobservedsystemdata)wasoutput.
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Fig. 1. A concept diagram showing flow of the interrogation algorithm. The
cycle (a, b, c) is repeated until a fixed period has elapsed. The dotted arrow in
c represents the divergence between two models’ predictions about the
future behavior of state variable y. The best test from c that is executed on the
physical system is the set of initial conditions that causes the models to
disagree the most in their predictions (marked by an asterisk). The framework
converges on accurate models by gradually accumulating information about
the system from a series of internally generated, intelligent tests. By period-
ically discarding older tests and replacing them with newer ones, the algo-
rithm cannot only model static systems, but continuously track changing
systems by producing models of its current state.

Table 1. Inference of noisy, synthetic systems

Synthetic system

Single pendulum
Target d��dt � �

d��dt � �9.8sin(�)
Best model d��dt � �

d��dt � �9.79987sin(�)
Median model d��dt � �

d��dt � �9.8682sin(�)
Lotka–Volterra interspecific competition between two species

Target dx�dt � 3x � 2xy �x2

dy�dt � 2y �xy � y2

Best model dx�dt � 3.0014x � 2xy � x2

dy�dt � 2.0001y � xy � y2

Median model dx�dt � 2.9979x � 2.0016xy�x2

dy�dt � 1.999y � 0.917xy�1.005y2

High degree decay
Target dx�dt � �x9y11

dy�dt � �x11y9

Best model dx�dt � �0.925x9y11

dy�dt � �1.0585x11y9

Median model dx�dt � 0.77x6y7�0.7x7y9�0.7x7y8

dy�dt � �5.47x5y7 � 2.69x4y 7

�2.33x5y6 � 2.03x4y6

�1.58x3y6 � 1.36x4y5

�0.68x3y5

The lac operon from E. coli
Target dG�dt � A2�(A2�1)�0.01G�0.001

dA�dt � G(L�(L�1)�A�(A�1))
dL�dt � �GL�(L�1)

Best model dG�dt � 0.96A2�(0.96A2�1)
dA�dt � G(L�(L�1)�A�(A�1))
dL�dt � �GL�(L�1)

Median model dG�dt � (A2�0.05A)�(A2�0.05A�1)
dA�dt � (G�0.02)(L�(L�1)�A�(A�1))
dL�dt � �0.65(1.97G�G�(G�1) �0.08L2)L�(L�1)

Thirty independent trials were conducted against each of the four synthetic
systems shown above (with �0.08 noise). The target system itself is shown along
with the final model produced by the best and median trial. �, angle between
pendulum arm and vertical; �, angular velocity; x, population of species 1; y,
population of species 2; G, concentration of �-galactosidase; A, allolactose; L,
lactose.
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Results
The algorithm was applied to four synthetic systems, and two
physical systems.

Application to Synthetic Systems. To apply the algorithm to a hidden
system, the experimenter must specify: (i) the components (i.e.,
variables) of the system and how they can be observed; (ii) possible
operators (algebraic, analytic and/or other domain-specific func-
tions) and operands (variables and parameter ranges) that can be
used to describe the behavior and relationships between these
variables; (iii) the maximum allowed model complexity (in this
work, determined as the maximum allowed depth of subexpres-
sions); (iv) the space of possible tests (in this case, sets of initial
conditions of the variables); and (v) the termination criteria (here,
minutes of allowed computation time).

The method was applied to four synthetic systems (Table 1) and
two real systems (Tables 2 and 3). Synthetic systems (Table 1) are
sets of differential equations hidden from the algorithm in which
proposed tests (initial conditions) are input, and noisy time series
data are output. For all synthetic systems, observation noise was
simulated by adding random values chosen uniformly from the
range [�0.08, 0.08] to each variable value at each time step in the
time series data, after the data had been generated. Uniform rather
than Gaussian noise was added due to implementation conve-
nience. Fig. 2 shows two sample trials of the algorithm against one
synthetic system (the single frictionless pendulum).

Table 1 reports sample models inferred by the algorithm when
applied to four dynamical systems taken from mechanics (the
nonlinear single pendulum), ecology (the Lotka–Volterra equa-
tions describing interspecific competition for a common resource),
an artificially created system with high degree, and genetics (a
model of the lac operon from Escherichia coli). For each system, 30
independent trials were performed, and the final model produced
by each trial was evaluated on a corpus of previously unseen system
behavior. For each system, the models that achieved the lowest and
the median error on this data (known as the model’s objective error)
are reported to convey the algorithm’s consistency. All four systems
were inferred by the same algorithm, with only minor changes: for
the pendulum, trigonometric operators were provided in addition
to the basic algebraic operators; for the lac operon, the Hill function
x/(x � 1) was provided as a possible equation building block.

To determine the importance of partitioning, automated prob-
ing, and snipping, three control experiments were also run against
these systems. The first control experiment uses random tests rather
than those proposed by automated probing (the testing phase

outputs a random set of initial conditions, rather than searching for
an informative set), and does not employ partitioning or snipping.
The second control experiment is the same as the first, but employs
partitioning. The third control experiment uses both partitioning
and automated probing but no snipping. Thirty trials of each control
experiment were performed, and the mean errors and sizes of the
final models was computed and compared against the models
output by the actual algorithm (partitioning, automated probing
and snipping). Fig. 3 and SI Fig. 4 report the mean model errors and
sizes, respectively. As can be seen, partitioning improves model
accuracy for the pendulum and lac operon systems; automated
probing improves model accuracy for all systems (although im-
provement is slight for the pendulum); snipping improves model
accuracy for the pendulum and somewhat for the lac operon
systems; and snipping reduces mean model size for all systems
except the system with high degree. The remaining four control
algorithms, in which one or more of the proposed algorithmic

Table 3. Inference of a physical pendulum

Box is flat Box is rotated �1.57rad Box is rotated �2.6rad

General form d��dt � �� � �

d��dt � �sin(�� � 	) � f(�, �)
Fraction of models matching

Control experiment 4 of 30 (13%) 26 of 30 (87%) 6 of 30 (20%)
Full algorithm 21 of 30 (70%) 29 of 30 (97%) 20 of 30 (67%)

Means and standard deviations � � 1.0040 � 0.0009 � � 1.0008 � 0.0014 � � 1.0039 � 0.0011
� � 0.0001 � 0.0001 � � 0.0028 � 0.0035 � � �0.0003 � 0.0007
� � �19.43 � 2.67 � � �20.45 � 1.06 � � �22.61 � 0.69
� � 1.104 � 0.047 � � 1.0009 � 0.0032 � � 1.0110 � 0.0492
	 � 0 � 0 	 � �1.575 � 0.026 	 � �2.6730 � 0.1149

Residual functions f(�,�)�{�0.2080, �0.29(��1.45),
�0.05�(��5.48), �0.24(��0.98),
�0.26(��1.4), . . .}

f(�,�)�{1.98sin(�), cos(1.35�),
�0.204( ��2.57), sin(�4.02�),
cos(�2.11�), . . .}

f(�,�)�{cos(1.21�), cos(�5.05�), 0,
sin(�), cos(1.12�), . . .}

A control algorithm (which fully samples the data set) and the full algorithm (which samples the data set using automated probing) were
both presented with the same behavior from three hidden physical systems (SI Fig. 6 a–c). The systems differ only in the rotation of the box
(angle offset), which changes the relationship between the variables (angle and angular velocity). Each system was perturbed to produce time
series data (SI Fig. 6 d–f ). Both algorithms were run against each data set 30 times; each trial was conducted for 2 min. For each trial, the model
with lowest error against all observed system data was output. These resulting models were often found to fit a general form. The mean
parameter estimation for the full algorithm is also shown, along with the residual functions many of the models possessed.

a (3 sec) b (8 sec) c (15 sec) d (26 sec) e (1 min) f (5 min)

g (2 sec) h (5 sec) i (9 sec) j (15 sec) k (21 sec) l (5 min)

(a)  d /dt = 0.45*-7.63 
      d /dt = sin( - ) ñ cos(  / (  / t)) 

(b)  d /dt = -3.23 
      d /dt = cos(sin( )) -3.6  / cos( ) / -2.09 / 

(c)  d /dt = 1.14
      d /dt = cos(sin( ))( + ) ^ (-3.97t  - ) / 

(d)  d /dt =  ñ((((0.33+ ) / ) / )+6.78t) 
      d /dt = sin(  + ( -0.26) / (t+2.04) + 8.94 ) 

(e)  d /dt =  ñ (0.33+ / ) / ( +6.78t) 
      d /dt = sin(  + ( -0.27) / (t+2.04) + 8.94) 

(f)   d /dt =  ñ (3.08/2t cos( ) +3.89t+t) 
      d /dt = sin(  + ( +t) / (t+2.04) + 8.94 ) 

(g) d /dt = 
     d /dt = -5.78 sin(sin( )) - 

(h) d /dt = 
     d /dt = -1.54  sin(0.58 )/0.38 

(i)  d /dt = 
     d /dt = sin( -13.37 / 7.85 / t ) / 0.38 

(j)  d /dt =  + t - t 
     d /dt = sin( -16.3 / 7.85 / sin( ) ) / 0.38 

(k) d /dt = 
     d /dt = sin( -16.26 / 8.3 / sin( ) ) / 0.21 

(l)  d /dt = 
     d /dt = sin(t-t) ñ 9.79987sin( )

Fig. 2. A typical unsuccessful and successful trial against the single synthetic
pendulum (with � 0.08 noise). (a–f ) Six successive models generated by the
algorithm without partitioning, automated probing or snipping, and the
phase diagrams produced by those models. (g–l) The behavior of successive
models from another typical trial in which all three were used, and the
corresponding phase diagrams.

Bongard and Lipson PNAS � June 12, 2007 � vol. 104 � no. 24 � 9945

A
PP

LI
ED

BI
O

LO
G

IC
A

L
SC

IE
N

CE
S

CO
M

PU
TE

R
SC

IE
N

CE
S

http://www.pnas.org/cgi/content/full/0609476104/DC1
http://www.pnas.org/cgi/content/full/0609476104/DC1
http://www.pnas.org/cgi/content/full/0609476104/DC1


components is disabled, are not shown: The reported algorithms are
sufficient to show a trend, suggesting that using all three compo-
nents provides significant modeling improvement across different
application domains compared with when only two, one, or none of
the components are used.

Fig. 2 reports the performance of a typical trial without and with
the three algorithmic enhancements (Fig. 2 a–f and g–l, respec-
tively) against the synthetic pendulum system. As can be seen,
partitioning allows the algorithm to quickly identify the first vari-
able, and automated probing invalidates an initially approximate yet
structurally incorrect model (Fig. 2g). Finally, snipping eventually
produces a compact, human-readable result (Fig. 2l), whereas the
control experiment never does.

Partitioning improves modeling because without it, inaccuracies
in one equation cause discrepancies in the behavior of other
coupled variables, making it difficult to localize where the inaccu-
racies in a candidate model lie. It is well known that interdepen-
dencies between model components hinder gradient-based search
methods (32–34). Partitioning allows for the localization of inac-
curacies, but it also makes search more tractable: Without parti-
tioning, the space of models increases exponentially with the
number of variables; with partitioning, the space grows polynomi-
ally (see Materials and Methods for a brief derivation). Finally,
partitioning allows for parallel modeling of each variable, further
accelerating the modeling process.

Automated probing also improves modeling because it has been
shown to be theoretically optimal (35) and practically useful in other
domains (18, 19). More specifically, when applied to dynamical
systems, tests locate boundaries between the basins of attraction
(bifurcation regions) of the system (SI Fig. 5 a, b, and d), and/or
elicit extremal behavior from it (SI Fig. 5c), thereby accelerating
modeling. This follows from the observation that increasingly
accurate models will have bifurcation regions close to one another
and to that of the system, so will disagree in behavior given a set of
initial conditions chosen from within those regions. Also, by
proposing similar tests from the same region, the algorithm can
effectively cancel out observation noise from those tests. Similarly,
in the case of the system with very high degree (Table 1 and SI Fig.
5c), the system only produces changes in its variables when one or
both variables are set close to their maximal allowed values;

automated probing tends to autonomously focus tests within that
region.

Application to Physical Systems. The full algorithm and a control
algorithm were also applied to two physical systems: an ecological
data set describing changes in hare and lynx populations (Table 2)
and three variants of a physical pendulum (SI Fig. 6 a–f and Table
3). The algorithms were applied to the two systems with only one
change: when applied to the pendulum, trigonometric functions
were supplied in addition to the standard algebraic ones. Unlike the
simulated system, time series data were collected before modeling
began. For the ecological application, historical data were used
(36); the physical pendulum was manually swung to generate data.

For the ecological application, the full algorithm requested
10-year spans of data from this 91-year data set according to
automated probing: The algorithm optimizes a set of initial con-
ditions, and then locates the year in the data set when the popu-
lations most closely match these conditions; the following ten years
of data are then extracted and used for further modeling. The
control algorithm is the same as the full algorithm except that it was
given 10-year spans that progressively cover the entire data set: the
first cycle through provides system behavior from 1845 to 1855, the
second cycle provides behavior from 1855 to 1865, and so on. For
the pendulum, the full algorithm requested 0.2-s spans of data from
this set according to automated probing. The control algorithm is
the same as the full algorithm except that it was given 0.2-s spans
that progressively cover the entire data set: the first cycle through
provides system behavior from 0 to 0.2 s, the second cycle provides
behavior from 0.2 to 0.4 s, and so on.

It was found that, for the physical systems, the models tended to
converge on a common structure; the means and standard devia-
tions of the inferred parameter values indicate the consistency of
the algorithm against these real systems (on average 82% of trials
converge on a common structure, see Tables 2 and 3). Although, in
the case of the ecological data set (Table 2), the control algorithm
produced higher parametric consistency due to the uniform sam-
pling of the data set, it was found that the control algorithm had
much lower structural consistency than the full algorithm when
applied to two rotations of the physical pendulum (Table 3): many
of the trials produced linear approximations [for example �sin(��
� 	) would be approximated by �(�� � 	)]. This can be explained
by the observation that automated probing tends to focus on time
spans that exhibit nonlinear behavior, such as the transition from
over-the-top rotation of the pendulum to rocking motion (SI Fig.
6e). This observation could be tested by applying the algorithm
(both without and with automated probing) against a system that
exhibits periods of linear and increasingly nonlinear behavior, such
as during the transition to a chaotic regime. It is hypothesized that
automated probing would focus data collection on the transitional
behavior and therefore capture the nonlinearities of the system
better than the same algorithm without automated probing.

For both systems, the common model structure that was found
had explanatory value. In the case of the ecological data set, the
model indicates that the prey species increases at a constant rate but
that rate of increase lessens as its population increases, a common
feature seen in population growth (37); the prey species decreases
in response to increased predators; the predators decrease propor-
tionally to their numbers; and the predators increase proportionally
to the number of prey. Although the model proposed by the system
is linear (possibly because of the simplifying effects of snipping), in
contrast with a more complex nonlinear model typically used to
explain these phenomena (38), the meaning extracted from the
inferred equations is similar.

In the case of the pendulum, the algorithm produces consistent
and accurate models in response to changes in the underlying
system. Also, residual functions for the first system (Table 3) are
quite consistent, and as they are functions of velocity may indicate
modeling of the friction inherent to the system.
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Fig. 3. Mean model errors obtained by the four algorithm variants applied to
the four synthetic systems (with � 0.08 noise). Thirty independent trials of each
algorithm variant were performed. The best model from each trial was output.
The best model was determined as the one with the least error against observed
noisy system behavior. That model was then evaluated on previously unseen
system behavior without noise, giving its objective error. In this way, a model that
achievesthecorrectequationstructureandparametervaluesshouldachievezero
objective error. [Objective error cannot be calculated for physical systems, as
non-noisy behavior is not possible. Objective error is only used to determine the
relative performances of the algorithm variants against synthetic systems.] Each
bar reports the mean objective errors of these best models. Shading indicates
algorithm variant (dark gray, no partitioning, automated probing, or snipping;
medium gray, only partitioning; light gray, partitioning and automated probing;
white, partitioning, automated probing, and snipping). Error bars indicate one
unit of standard deviation (n � 30).
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Scalability. To test scalability, both the full algorithm and a control
algorithm without partitioning were applied to 18 randomly created
stable nonlinear systems, with increasing numbers of variables. As
summarized in SI Table 4, the proposed method found exact
solutions most of the time (on average, 71% of trials, see SI Table
4) for all systems up to six variables. In contrast, only one of the 18
systems was ever identified without partitioning. As a comparison,
structural identification methods reported in the literature (8–16)
so far have not modeled systems with more than four variables. For
the system with four variables, only a linear model was reported (4).

Discussion
Here we have demonstrated a unified computational framework
for automatically inferring models of nonlinear, coupled dynamical
systems, with possibly high degree, from direct system interrogation
or noisy time series data. The method was validated on data from
real systems for which the underlying equations are not known: the
method consistently produces models that are similar in structure
and meaning to the currently known best models of such systems.
The scalability of this method has been demonstrated as systems
with many variables, interdependencies and nonlinearities have
been successfully identified.

Despite the demonstrated scalability of the described framework,
the number of state variables considered here remains orders of
magnitude less than the hundreds or thousands of components
found in systems biology applications. In future work, existing
methods for identifying separable components, such as clustering
and correlation methods to identify a subset of the proteins involved
in a specific metabolic pathway (39), could complement this frame-
work. In this way, components will first be identified using existing
methods; the proposed framework could then automatically syn-
thesize models of these interconnected components separately.

The current limitation of the proposed framework is that it is
restricted to systems in which all variables are observable. However,
in future the framework could also be applied to systems in which
some of the variables are unobservable. With partitioning enabled,
parts of the system unaffected by the unobservable variables may
gradually be modeled correctly while the model error of variables
influenced by the unobservable variables would remain high. This
dichotomy could be automatically detected and exploited to localize
the influence of unobserved parts of the system: Variables could be
classified based on changes in their model error over time. Other
techniques could then be brought to bear for clarifying the rela-
tionship between the unobserved parts of the system and the
isolated variables.

It is possible that the discrete time series used in this work biases
the structure of the synthesized models. In future work, the
modeling component could be expanded to generate models
against different subsets of the time series data, sampled at different
frequencies. Commonalities across these models could then be
integrated into a single model, ensuring a final model that is
insensitive to the sampling frequency of the system data.

Finally, by discarding older results and continuously replacing
them with fresh data, the system may track a changing system by
constantly generating models of its recent state. By adopting
techniques from chaotic modeling in which the changing system is
constantly tracked but not explicitly modeled (40), it may be
possible to extend the framework to synthesize explicit models of
chaotic systems with constantly changing internal structure.

Conclusions
One of the areas where there is a growing need for automated
modeling is systems biology. Biological networks tend to be heavily
interdependent, and the demonstrated ability of partitioning to
separately model the components of a network may be of increasing
value when applied to larger networks, and those in which not all
variables are observable. Also, the ability to continuously request
new data rather than digest precollected data opens the way toward

continuous rather than static modeling. The recent finding that
organisms exhibit topological changes in gene expression under
different conditions (41) indicates the future need for such dynamic
modeling paradigms. Our results suggest that the proposed method
could be used to automatically generate detailed, testable hypoth-
eses of such complex and changing systems: not just inferring
correlations between variables in large coupled biological networks
(42, 43) such as genetic regulatory or metabolic networks, but also
automatically inferring causal relationships including cyclical de-
pendencies and feedback circuits through active interrogation.
Indeed, active interrogation has been identified as a new way
forward for understanding biological systems (44). Such automa-
tion may prove critical in our quest to model increasingly complex
coupled phenomena, identified as a major frontier in 21st century
science (27, 28).

Materials and Methods
Here, we describe the three main tools used to make the automated
inference of coupled, nonlinear dynamical systems tractable, as well
as descriptions of the systems used in this study.

Partitioning. Partitioning relaxes the constraint that a model must
approximate equations for all variables at once. Without partition-
ing, we used the standard fourth-order Runge–Kutta method (45)
to integrate the differential equations of both the hidden system and
candidate models. In partitioning, when the differential equation of
variable i is integrated, references to other variables are substituted
by real data. For more details regarding partitioning, please refer
to SI Text.

Modeling. Candidate models are represented as a set of ordinary
differential equations dx1/dt � fm

(1), . . . , dxk/dt � fm
(k). The equations

are encoded as a hierarchy of nested symbolic subexpressions. A
model is then composed of a set of nested expressions in which each
expression i encodes the equations describing the time evolution of
variable i. When performing inference, the user provides a set of
possible operators and operands that could be used to compose
equations. During the first time step of integration, each operand
in each equation is set to the initial conditions, and the expression
is evaluated. The return value of each expression then represents
the derivative computed for that variable. At subsequent time steps,
the variables are updated to their current values and the expression
is re-evaluated. The output of a candidate model is then a set of time
series for the k variables. When partitioning is used, a candidate
model only encodes a single expression, determining the evolution
of the current variable under investigation.

Models are optimized against all of the time series observed from
the system so far. In the modeling phase of the algorithm (Fig. 1b),
each model is therefore integrated p times, where p is the number
of times that the system has been supplied with initial conditions,
and the resulting behavior observed. Model error then becomes the
mean error over all observed time series.

We used a hill climber (46) for model optimization. After
evaluation, each model undergoes a random perturbation. If the
perturbed model has lower error than the original model, the
original model is replaced with the perturbed model; otherwise, the
perturbed model is discarded. To create the perturbation, a ran-
domly selected node in the expression is replaced by a new random
operator or operand. If the node is changed from an operand into
an operator, new random subexpressions are created, according to
the arity of the new operator. If it is changed from an operator into
an operand, the subexpressions supplying the parameters of the old
operator are deleted. If the operand is a variable, a new variable is
chosen uniformly from the range [x1, . . . , xk]. If the operand is a
constant, a new constant is chosen uniformly from the floating-
point range [�10, 10] with probability 0.5, or a small value chosen
from a Gaussian distribution (
 � current value; � � �0.5 current
value�) is added to the current constant.
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During the first pass through the modeling phase, five random
models are created, and optimized for 1,000 iterations. During the
second and subsequent passes through this phase, estimation begins
with the models optimized during the previous pass. If partitioning
is used, the optimization process is broken into k epochs: during
each epoch, five candidate equations describing the ith variable are
optimized for 1,000/k iterations. The 5k equations are then repack-
aged into five candidate models comprised of k equations each. The
model with the lowest error is output at the end of the last pass
through the modeling phase.

Automated Probing. The key concept behind automated probing is
that the most informative perturbation of a hidden system is the one
that causes the most disagreement among predictions of candidate
models of that system (35). As Fig. 1 illustrates, modeling alternates
with testing: new sets of initial conditions (‘‘tests’’) are optimized,
and the best one is either directly executed on the system to extract
new behavior from it (Fig. 1a) or used to select a new sample from
time series data. At the beginning of each testing phase (Fig. 1c),
a set of five tests are created randomly, in which initial conditions
are chosen uniformly from a range specified by the user. Each test
is then evaluated for how much variance it can induce in the current
set of models. For details regarding computing the quality of a test,
see SI Text.

We used a hill climber for test optimization. After the qualities
of all five candidate tests are computed, each candidate test is
randomly perturbed. If the perturbed test creates more disagree-
ment in model predictions than the original test, the original test is
replaced with the perturbed test. To create the perturbation, a
variable is selected at random, and a small amount of Gaussian
noise (
 � current value; � � �0.5 current Value�) is added to its
initial value. This process is continued for 100 iterations, at which
point the test with the highest quality is supplied to the system, or
used to locate a new sample from the data set.

Snipping. When snipping is used, the minimum and maximum
values that pass through each operator and operand during
integration are recorded. During model perturbation, a sub-
expression may be replaced with a constant value chosen
uniformly from the range defined by the minimum and max-

imum values previously produced by that node. This allows for
the introduction of a small change in expression value while
reducing the size of the expression.

The Hidden Systems. The single pendulum system describes a single,
nondriven, nondamped pendulum with no limits on its rotation.
The Lotka–Volterra equations are a specific instance of a system
describing interspecies competition for a common resource (38).
The synthetic system of high degree was generated at random,
constrained to contain only a single term for each variable, and each
term must have degree 20. Equations were generated until a pair
was found that was numerically stable. The lac operon system
describing lactose metabolism in E. coli was adapted from Keener
and Sneyd (47). Initial conditions for this system assume that the
starting concentrations for beta-galactosidase, allolactose and lac-
tose can be externally set, and the resulting behavior observed:
Dekel and Alon (48) describe such an experimental setup. Indeed,
modern systems biology technology is increasingly able to auto-
matically perturb systems and measure their dynamic output on a
genomic scale (49). The predator–prey data, which produced the
models reported in Table 2, indicate changes in snowshoe hare and
Canadian lynx populations collected by the Hudson’s Bay Company
and are summarized in ref. 36. The 57.2 � 5.1 cm physical pendulum
arm weighed 438 g, and angle was recorded by a Novotechnik RFC
4800–600 noncontacting rotary sensor between the arm and the
pendulum base. The synthetic systems reported in SI Table 4 were
generated to follow the general form of the Lotka–Volterra com-
petition equations (38). Each equation in each system was gener-
ated randomly to contain two terms, to be of second degree, and
each term is parameterized by an integer chosen uniformly from the
range [�3, 3]. Each system was tested for numerical stability.

Documentation, code, executables, and data from this paper are avail-
able at http://ccsl.mae.cornell.edu. We thank Erez Dekel and Uri Alon
for useful discussions. This work was supported in part by the Keck
Future Initiative Grant NAKFI/SIG07 and by National Science Foun-
dation Grant CMMI 0547376. This research was conducted using the
resources of the Cornell Theory Center, which receives funding from
Cornell University, New York State, federal agencies, foundations, and
corporate partners.
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