Modern Robots: Evolutionary Robotics

Programming Assignment 8 of 8*

Description

In this assignment you will employ a multi-objective evolutionary algorithm to evolve organisms that are
both long (in any direction) and that move as far as possible.

Tasks

1. Copy all your code for assignment 7 to the folder you will use for assignment 8. Make sure to keep a
working backup of assignment 7.

2. Extract hw_8_code.zip and move all files to your assignment 8 folder.

3. Open EA_MultiObj.hpp and implement the init and epoch functions according to an NSGA-II based
multi-objective algorithm. The algorithm will use Pareto-based tournament selection for parent selection
and elitist Pareto-based rank selection for survivor selection. You do not have to implement crowding, but
you have to make sure that, if there are multiple individuals occupying the exact same position on the Pareto
front, only one of those individuals is added to each layer. Note that, because the selection operators are
very specific for this algorithm, we will not pass selectors to the algorithm.

4. Next, implement the evaluate function in Fit_MultiObjDistLong.hpp as a fitness function that measures
both the distance that a robot can move, as well as the maximum distance between any of its parts. Adding
these measures as objectives to be maximized should result in robots that range from being very long (in
any direction) to being very fast.

5. Now it is time to evolve the robots. Open main.cpp, comment out or delete all previous code (backup!)
and include all necessary header files.

Use the following type as your individual:

typedef IndivMultiObj<EvolvingRobot> indiv_t;

*Original material was graciously provided by Josh Bongard. Jeff Clune slightly modified it. Joost Huizinga heavily modified
it.



Start with the following parameters:

e Population size: 50

e Generations: 25

While running the algorithm, log the entire Pareto front at each generation. This means you will have
to write the following information at each generation: for each individual on the Pareto front write the
performance on the first and second objectives to the log file, separated by a space. Write each generation
to a single line. For example, if the current population has two individuals on the Pareto front, where the
first individual has the performance (1.72, 0.2), and the second individual has the performance (0.76, 0.95),
you should write the line:

1.72 0.2 0.76 0.95

Plot the resulting file with plotPareto.py and add the result to your document. The result should look like
figure 1.

Lastly, visualize the entire Pareto front in a single simulator window. To do so you can use the following
code:

sim.deleteRobots();

ea_t::pop_t paretoFront = ea.getParetoFront();

lexicalSort<indiv_t> sort;

std: :sort(paretoFront.begin(), paretoFront.end(), sort);

btVector3 center(0,0,0);

btVector3 incr(2.5,0,0);

btVector3 current = center + -incrx*btScalar(paretoFront.size()-1)*0.5;

for(size_t i=0; i<paretoFront.size(); ++i){
sim.buildRobot (paretoFront[i], current);
current += incr;

}

sim.getDynamicsWorld () ->setDebugDrawer (&gDebugDrawer) ;
glutmain(argc, argv,640,480,"Simulator",&sim);

Where sim is an instance of the simulator, ea is an instance of the evolutionary algorithm, and ea_t is the
type of the evolutionary algorithm.

Take a screenshot in which you can see all individuals on the Pareto front and add it to your document.
This figure should look like figure 2. Unpause the simulation and wait until all organisms have moved some
distance. Pause the simulation, make another screenshot, and add it to your document. This figure should
look like figure 3.

Deliverables

A pdf document containing the figures resembling figures 1, 2 and 3 and any files you changed.



2.0r 1 22.5
20.0
156 i 17.5
15.0
%]
C
S o
‘g‘a 1256
L o | o
g 1.0 2
10083
7.5
0.5} i
5.0
2.5
0'Oo 1 2 3 4 0.0
Distance

Figure 1: The Pareto front over time. Note that your Pareto front may be much wider.

Figure 2: The final individuals on the Pareto front. Your individuals may look quite different and you may
have more than just two individuals.



Figure 3: The final individuals after moving some distance. Your individuals may look quite different and
you may have more than just two individuals.



