
Modern Robots: Evolutionary Robotics

Programming Assignment 7 of 8∗

Description

In this assignment you will evolve the morphology of block based robots, whose morphology is determined
by a Compositional Pattern Producing Network (CPPN), to make them move as far as possible.

Tasks

1. Copy all your code for assignment 6 to the folder you will use for assignment 7. Make sure to keep a
working backup of assignment 6.

2. Extract hw_7_code, and move all files to your assignment 7 folder.

3. First, you’ll need to implement a CPPN. To implement a CPPN you can extend your neural network
implementation, but you’ll have to make the following changes: the network has to be feed-forward (meaning
it can not contain any cycles) and each neuron needs to have an evolvable activation function. For this
assignment, you will create a new neuron class where each neuron can have one of the following activation
functions: linear, sine, Gaussian, and sigmoid. Open Ind_CPPN_Neuron.hpp and implement the propagate
function, such that it will use one of these functions based one the value of the _activationFunction
attribute.

4. Next, you have to make sure that the activation function can be evolved and that the network is always
feed-forward. Open Ind_CPPN.hpp and implement the following functions:

• CPPN (constructor). The CPPN constructor needs to set the number of inputs and outputs of the
network, define a default value for the _neuronActMutRate (0.05 is suggested for this assignment), and
add connections to the network such that all inputs connect to all outputs (and remember that the
network has to be feed-forward, so backwards connections are not allowed).

• randomize. The randomize function should perform the same operations as the one in your neural
network implementation, but also has to select a random activation function for each neuron.

• mutate. The mutate function also needs to perform the same operations as the one in your neural
network implementation, and each neuron should have a _neuronActMutRate chance to randomly get
a new activation function. In addition, whenever you add a new connection to the network, you need
to make sure that this action does not cause a cycle.

∗Original material was graciously provided by Josh Bongard. Jeff Clune slightly modified it. Joost Huizinga heavily modified
it.

1



• getDepth. The getDepth function should return the depth of the network, which is the number of
steps required to activate the entire network.

In all cases, see the comments in the header file for details. Once you have implemented the CPPN you can
use the checkCPPN function found in Test_HW7UnitTest.hpp to test that your CPPN implementation works
correctly.

5. Next you’ll need to create an evolving robot. Open Ind_EvolvingRobot.hpp, and implement the following
methods:

• build. This function should build the robot based on its CPPN.

• _connect. This is a helper function called by build above; it should connect two adjacent blocks for
our robot.

• _activateCppn. This is a helper function which will activate the CPPN.

Detailed instructions can be found in the comments of each function. This should allow you to successfully
build a robot given a CPPN genome.

6. You’ll also need a slightly different fitness function to evolve these robots. Implement Fit_EvolvingRobot.hpp
according to the comments. You can copy most of your code from previous assignments, but you’ll have to
make some minor changes to account for the fact that an individual is a robot, not a neural network.

7. Now it is time to evolve the robots. Open main.cpp, comment out or delete all previous code (backup!)
and include all necessary header files.

Your individual should have the type:

typedef IndivFitness<EvolvingRobot> ind_t;

Try the following parameters:

• Population size: 50

• Generations: 10

• Parent selection: tournament selection with tournament size 10

• Survivor selection: tournament selection with tournament size 10

Log the fitness over time and write it to a file. Plot this file with plotLine.py. Also make a screen shot of
the final individual after it moved at least some distance. Your figures should look like figures 1 and 2.

Deliverables

A pdf document containing the figures resembling figures 1 and 2 and any files you changed.

2



0 1 2 3 4 5 6 7 8 9
Generations

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Fi
tn

e
ss

Figure 1: The fitness of the best individual over time. Note: while your fitness curve can be quite different,
your algorithm should at least be able to reach a fitness of 4. If it does not, try re-running your algorithm
a few times. If it doesn’t reach a fitness higher than 4 in any of those runs, there is probably a bug in your
code.

Figure 2: The final individual. Your individual may look quite different, but do make sure that it moved at
least some distance from the starting location (the black dot).

3


