Modern Robots: Evolutionary Robotics

Programming Assignment 6 of 10*

Description

In this assignment you will create a population based evolutionary algorithm with tournament selection and
use it to evolve the neural network driving the table robot.

Tasks

1. Copy all your code for assignment 5 to the folder you will use for assignment 6. Make sure to keep a
working backup of assignment 5.

2. Extract hw_6_code, and move EA_Population.hpp and Sel_TournamentSelection.hpp to your assign-
ment 6 folder.

3. Open EA_Population.hpp and implement the init, epoch and getBest functions. Look at their com-
ments for the specifications.

4. Open Sel_TournamentSelection.hpp and implement the three versions of the select function.

5. Open main.cpp and comment out or delete your previous code (backup!). Run the population based
evolutionary algorithm to evolve a population of 50 individuals for 10 time-steps. The individuals should
be the same as in assignment 5: neural networks with 4 inputs, each directly connected to all 8 outputs.
Parent and survivor selection should be set to tournament selection with a tournament size of 2 and ‘elitism’
enabled. The RobotDistanceFitness should be the fitness function.

Remember that, to create an instance of the population based evolutionary algorithm, you will need to
supply both the parent and survivor selection objects. Assign them those as follows:

RobotDistanceFitness fitnessFunction(&simulator);

TournamentSelector selection(tournamentSize, true);

PopulationEA<fit_t, TournamentSelector, TournamentSelector> ea;
hillClimber.init(initialNetwork, fitnessFunction, selection, selection, populationSize);

Here, tournamentSize and populationSize should be set according to the values mentioned above and
simulator should be your instance of the simulator.

*Original material was graciously provided by Josh Bongard. Jeff Clune slightly modified it. Joost Huizinga heavily modified
it.



Write the fitness of the best individual over generations and the average fitness of the population over
generations to two different files.

6. If the algorithm seems to work correctly, rerun the code 5 more times, each time writing to different files.
Plot the 5 files containing the best fitness over generations to a single file with 1inePlot.py (supply all
file-names as command line arguments in a single command to do so). Do the same for the average fitness
files. Add these files to your document, they should look like figures 1 and 2.

7. Lastly, we’ll check for the effect of having a population. Change the population size to 1 and change
the number of generations to 500, so the number of evaluations stays the same. These changes effectively
turn the algorithm into a basic hill-climber. Rerun the algorithm 5 times and show the best fitness over
generations in a single plot. Add this figure to your document, it should look like figure 3. What do you
notice? Is the population based algorithm always better than the hill-climber? Why? You do not need to
include the answers to these questions in your document.

Deliverables

A pdf document containing the figures resembling figures 1, 2, and 3, and any files you changed.

60

55

25F

20

0 1 2 3 4 5 6 7 8 9
Generations

Figure 1: The fitness of the highest performing individual in the population over 10 generations.



45

5O 1 2 3 4 5 6 7 8 9

Generations

Figure 2: The average fitness of the population over 10 generations.

40
35 .
]
; . f
30} :
25} :
|

A
2 20t .

=
[y ’7

A

0 100 200 300 400 500
Generations

Figure 3: The fitness with a population of 1 over generations.



