
Modern Robots: Evolutionary Robotics

Programming Assignment 2 of 10∗

Description

In this assignment you will be creating an artificial neural network (ANN). There are many kinds of ANNs,
but they all share one thing in common: they are represented as a directed graph in which the nodes are
models of biological neurons, and edges are models of biological synapses. Henceforth, the terms neurons
and synapses will be used to describe the elements of an ANN. The behavior, in addition to the structure of
an ANN is also similar to biological neural networks: (1) each neuron holds a value which indicates its level
of activation; (2) each directed edge (synapse) is assigned a value, known as its strength, which indicates
how much influence the source neuron has on the target neuron; and (3) the activation a of a neuron i at
the time step t+ 1 is usually expressed as

at+1
i = σ(

n∑
j=1

wija
t
j) (1)

where there are n neurons that connect to neuron i, atj is the activation of the jth neuron at time-step t that
connects to neuron i, wij is the weight of the synapse connecting neuron j to neuron i, and σ() is a function
that keeps the absolute value of the activation of neuron i from growing too large.

In this project you will create an artificial neural network in C++, simulate its behavior over time, and
visualize the resulting behavior.

Tasks

1. Copy all your code for assignment 1 to the folder you will use for assignment 2. Make sure to keep a
working backup of assignment 1.

2. Extract hw_2_code, and move Ind_NeuralNetwork.hpp, Ind_Neuron.hpp, and Ind_Connection.hpp to
your assignment 2 folder.

3. Open Ind_Neuron.hpp and Ind_NeuralNetwork.hpp and implement all functions marked TODO: YOUR
CODE HERE. Make sure to test each function after you have implemented it, so you know that it works
correctly. The network should be a fully-connected, recurrent neural network, where the activation function
is the hyperbolic tangent. Note: you are allowed to extend the Neuron and NeuralNetwork classes with your
own functions for your convenience.

∗Original material was graciously provided by Josh Bongard. Jeff Clune slightly modified it. Joost Huizinga then heavily
modified it.

1

4. Comment out, or delete, all the homework 1 code in main.cpp (but remember to keep a backup).

5. First, we will check that our neural network is working correctly by creating a benchmark neural net-
work for which we know the correct output. To make our neural networks more general for future assign-
ments, we will use template programming1. As a result, you will have to define a new network like this:
NeuralNetwork<> myNetwork;. Now, create a neural network with 10 neurons and initialize it as follows:

Listing 1: Initialization for the benchmark network.
for(int i=0; i<numberOfNeurons; ++i){

for(int j=0; j<numberOfNeurons; ++j){
network.addConnection(i, j, i%3-1);

}
}

for(int i=0; i<numberOfNeurons; ++i){
network.setValue(i, 1);
network.getNeurons ()[i]. setBias(i%3-1);

}

This creates a network where the connections and biases from each neuron are either −1, 0, or 1. In addition,
it initializes every neuron with an activation value of 1. Write the network to a file with:

std:: ofstream networkFile("hw2_network_test.csv");
networkFile << network << "\n";
networkFile.close ();

Plot the network with the provided plotNetworkCircle.py Python script. If your network file is called
hw2_network_test.csv, you can plot your network with:

python plotNetworkCircle.py hw2_network_test.csv

The result should be identical to Fig. 1. If it is not, there is some error in the way you construct the network,
and you should try to fix the issue before moving on. Once the network looks as expected, you should include
this figure into your document.

6. Subsequently, run the network for 50 time steps, an write the activation of the neurons to a single file.
Call the step and logActivation methods you implemented to run the network and log its activation. Note:
the resulting file should contain 50 rows, where each row consists of 10 numbers. Each row represents the
activation of the network at a single time-step.

7. Plot the resulting file with the provided plotMatrix.py Python script. This should produce the same
image as shown in Fig. 2. Include the image into your document. If your image does not look like Fig. 2,
you have an error in your neural network, and you should try to resolve the issue before moving on.

8. Randomize the neural network from above, such that each weight and each bias is assigned a random
number between -1 and 1 (inclusive). Write the randomized neural network to a file and plot the result. The
resulting image should look like, but not be identical to, figure 3. Add this figure to your document.

9. Initialize the current activation value of each neuron to a random number in [0,1], run the network for
50 time-steps, and write the activation of the neurons to a single file. Call the setValue method of a neuron

1If you are unfamiliar with C++ template programming, please consider doing some online tutorial such as this one:
http://www.tutorialspoint.com/cplusplus/cpp_templates.htm

2

to set its current activation value, as shown in listing 1. Once again, write the activation of all neurons
to a file, as explained in step 6, and plot the result with the plotMatrix.py Python script. This should
produce an image similar to that shown in Fig. 4. Include the image into your document. The image does
not need to look exactly like that of Fig. 4. In fact, re-run your program several times, and compare the
images produced. Notice that the patterns of neuron activation vary greatly from one run to the next.

10. Things to think about: Why do some of the neurons oscillate like this? What happens when all of the
synaptic weights are set to -1, or to zero, or to 1? After you think about it, try it and see if you were right!
You do not need to include your answers in the document you submit for grading.

11. More things to think about: what is lacking in this visualization? Are all of the connections shown?
Which types are not? Can you think of a better way to show all the connections? Can you implement it?
This is not required, but if you do implement a nice way to show all the connections, please include that as
an **additional** plot in your submitted PDF and I’ll give you extra credit if I like it. Make sure to include
a caption that describes how the information is shown.

Deliverables

A pdf document containing the figures resembling figures 1 to 4, and a zip file containing your modified
source and header files.

3

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Figure 1: The benchmark ANN, where red and green lines indicate synapses with negative and positive
weight, respectively. Your figure should be identical to the one shown.

4

0 10 20 30 40

0

2

4

6

8

Figure 2: The activation of the benchmark ANN. Your figure should be identical to the one shown.

5

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Figure 3: An ANN with 10 neurons and 10×10 = 100 synapses, where red and green lines indicate synapses
with negative and positive weight, respectively.

6

0 10 20 30 40

0

2

4

6

8

Figure 4: The activation of a network with 10 neurons over 50 time-steps.

7

