
Modern Robots: Evolutionary Robotics

Programming Assignment 1 of 8∗

Overview

In the field of evolutionary robotics an evolutionary algorithm is used to automatically optimize robots so
that they perform a desired task. There are many kinds of evolutionary algorithms, but they all have one
thing in common: they are a simplified model of how biological evolution works. In short, in any evolutionary
algorithm (1) the fitness of each entity in an initially random population is measured; (2) those entities with
lower fitness are discarded; (3) modified copies of those that remain are made; (4) the fitness of each new
entity is measured; and (5) this cycle repeats until a highly fit entity is discovered.

In this assignment you will be creating the simplest evolutionary algorithm, a serial hill climber. The
algorithm is known as a hill climber because one can imagine the space of all entities that are to be searched
as lying on a surface, such that similar entities are near one another. The height of the surface at any one
point indicates the quality, or fitness of the entity at that location. This is known as a fitness landscape. A
hill climber gradually moves between nearby entities and always moves ‘upward’: it moves from an entity
with lower fitness to a nearby entity with higher fitness.

In this assignment, rather than evolving robots, you will simply evolve vectors of the form v = e1, ...en,
where the ith element in the vector may take on a real number in [0, 1]. The fitness of a vector v we will
define as the mean value of all of its elements.

Thus, the hill climber will search for vectors in which all of the elements have values near one. In
assignment 3, you will re-use the hill climber you develop here to evolve neural networks; in assignment 5,
you will use it to evolve robots.

Tasks

You will be creating the hill climber in C++, and create plots of its performance in Python. If you are not
familiar with Python, don’t worry, the actual coding in Python will be minimal.

1. Download, install and run Python, an open source language available for most computing platforms.
You are free to do all of the programming assignments in a Mac, Windows or Linux environment. In order
to make sure you installed Python correctly, work through the first 10 minutes of any online Python tutorial.

2. In order to use vectors and matrices in Python you will also need to download and install NumPy
and SciPy. In order to make sure you installed both of these applications correctly, work through the first
10 minutes of a tutorial online that uses both/either.

∗Original material was graciously provided by Josh Bongard. Jeff Clune slightly modified it. Joost Huizinga heavily modified
it.

1



3. Rather than submitting code to be graded, in this course you will submit screenshots of graphics that
visually demonstrate you have successfully completed the assignment. The three screenshots you will create
for this assignment look like those shown in Fig. 1, 2, and 3. To create graphics in Python, download and
install matplotlib, a Matlab-similar set of graphing libraries. In order to make sure you installed Matplotlib
correctly, copy and paste the code associated with any of the graphs from the site’s gallery.

4. After you have successfully installed Python it is time to start working on the actual hill climber. A
framework for the hill climber is provided in a set of header files that comes with this assignment. Extract
the code archive and make sure that it compiles.

5. The first step is to create an individual for your hill climber, in this case a vector of doubles. In
Ind Vector.hpp you will find the basis for such and individual. Implement the functions randomize and
mutate to assign a random value to every element, and to assign a random value to random elements,
respectively (see the comments for details). Look at Misc Random.hpp for functions that produce random
values.

6. The second step is to create a fitness function for our vector. Open Fit Vector.hpp and imple-
ment the evaluate function to set the fitness of the individual to be the average of its elements. Use
individual.setFitness(fitness) to assign the fitness to the individual once it is calculated.

7. The third step is to implement the actual hill climber. Open EA HillClimber.hpp and implement
the init function and the run function. The init function should set the fitness function as well as set,
randomize, and evaluate the parent. The run function should run the hill climber for the provided number
of generations, and it should write the parent and the fitness of the parent to two separate files. See the
comments in EA HillClimber.hpp for details.

8. The fourth step is to actually run the hill climber. You should now be able to open main.cpp and run
the following code:

//Define the type of our individual.

typedef IndivFitness<Vector> ind_t;

//Set the seed to be based on the current time.

//You can also set the seed to a particular number.

seed();

//Set the fitness function.

//This fitness function has no parameters, so it takes no arguments.

VectorAverage fitnessFunction;

//Set the initial individual to have a length of 50,

//a minimum value of 0,

//a maximum value of 1,

//and a mutation rate of 0.05

ind_t initialIndividual (Vector (50, 0.0, 1.0, 0.05));

//Create our hill climber. Note that we have to provide the type of individual

//(VectorIndividual) and the type of fitness function (VectorFitnessFunction)

//between the corner brackets.

HillClimber<ind_t, VectorAverage> hillClimber;

//Initialize our hill climber with the initial individual and the fitness function.

2



hillClimber.init(initialIndividual, fitnessFunction);

//Run the hill climber for 5000 time-steps,

//and write the fitness to "hw1_fitness1.csv"

//and the parent for each generation to "hw1_individual1.csv"

hillClimber.run(5000, "hw1_fitness1.csv", "hw1_individual1.csv");

9. You should now be able to visualize your fitness over time. Use the provided plotLine.py to create
a line plot of your fitness over time. The full command would be:

python plotLine.py hw1_fitness1.csv

The resulting image should look like figure 1.

10. You should also be able to plot the genome of the parent of generations. Use the provided
plotMatrix.py to create a plot showing the genome of the parent over generations. The full command
would be:

python plotMatrix.py hw1_individual1.csv

The resulting image should look like figure 2.

11. Run your hill climber 5 times, and make sure that each run creates a different fitness file (don’t forget
to change the seed if you defined it!). Plot the fitness of all runs in a single plot using plotLine.py. Note
that you can simply provide a list of files to plot multiple lines. For example:

python plotLine.py fit1.csv fit2.csv fit3.csv fit4.csv fit5.csv

The resulting image should look like figure 3.

Deliverables

Generate the figures looking like figures 1, 2, and 3, and put them into a single pdf document, and name
it: hw1 your name.pdf. Also, take all files you modified and put them into a single zip archive named:
hw1 your name.zip. Email the pdf document and the zip file to the grader.

Notes

1. For those of you working on a Mac, the order in which you import the Python packages may matter.
From the command line on a Mac:

python

>>> import scipy

3



>>> import numpy

>>> import matplotlib

2. Make sure you get the right version of numpy for your python version. If, for example, you have
python 3.3 you need a python3.3 package.

4



0 1000 2000 3000 4000 5000
Generations

0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

e
ss

Figure 1: Fitness curves from one run of the hill climber.

0 1000 2000 3000 4000 5000

0

10

20

30

40

Figure 2: The values of the 50 genes in the vector: lighter values indicate higher values.

0 1000 2000 3000 4000 5000
Generations

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

e
ss

Figure 3: Fitness curves from each of five runs of the hill climber.

5


