
LSTM: A Search Space Odyssey

Klaus Greff KLAUS@IDSIA.CH
Rupesh Kumar Srivastava RUPESH@IDSIA.CH
Jan Koutnı́k HKOU@IDSIA.CH
Bas R. Steunebrink BAS@IDSIA.CH
Jürgen Schmidhuber JUERGEN@IDSIA.CH

The Swiss AI Lab IDSIA
Istituto Dalle Molle di Studi sull’Intelligenza Artificiale

Università della Svizzera italiana (USI)
Scuola universitaria professionale della Svizzera italiana (SUPSI)

Galleria 2, 6928 Manno-Lugano, Switzerland

Abstract
Several variants of the Long Short-Term Mem-
ory (LSTM) architecture for recurrent neural net-
works have been proposed since its inception in
1995. In recent years, these networks have be-
come the state-of-the-art models for a variety of
machine learning problems. This has led to a re-
newed interest in understanding the role and util-
ity of various computational components of typ-
ical LSTM variants. In this paper, we present
the first large-scale analysis of eight LSTM vari-
ants on three representative tasks: speech recog-
nition, handwriting recognition, and polyphonic
music modeling. The hyperparameters of all
LSTM variants for each task were optimized sep-
arately using random search and their impor-
tance was assessed using the powerful fANOVA
framework. In total, we summarize the results
of 5400 experimental runs (≈ 15 years of CPU
time), which makes our study the largest of its
kind on LSTM networks. Our results show
that none of the variants can improve upon the
standard LSTM architecture significantly, and
demonstrate the forget gate and the output activa-
tion function to be its most critical components.
We further observe that the studied hyperparam-
eters are virtually independent and derive guide-
lines for their efficient adjustment.

1. Introduction
Recurrent neural networks with Long Short-Term Memory
(which we will concisely refer to as LSTMs) have emerged
as an effective and scalable model for several learning

problems related to sequential data. Earlier methods
for attacking these problems were usually hand-designed
workarounds to deal with the sequential nature of data such
as language and audio signals. Since LSTMs are effec-
tive at capturing long-term temporal dependencies without
suffering from the optimization hurdles that plague sim-
ple recurrent networks (SRNs) (Hochreiter, 1991; Bengio
et al., 1994), they have been used to advance the state of the
art for many difficult problems. This includes handwriting
recognition (Graves et al., 2009; Pham et al., 2013; Doetsch
et al., 2014) and generation (Graves et al., 2013), language
modeling (Zaremba et al., 2014) and translation (Luong
et al., 2014), acoustic modeling of speech (Sak et al., 2014),
speech synthesis (Fan et al., 2014), protein secondary struc-
ture prediction (Sønderby & Winther, 2014), analysis of
audio (Marchi et al., 2014), and video data (Donahue et al.,
2014) among others.

The central idea behind the LSTM architecture is a memory
cell which can maintain its state over time, and non-linear
gating units which regulate the information flow into and
out of the cell. Most modern studies incorporate many im-
provements that have been made to the LSTM architecture
since its original formulation (Hochreiter & Schmidhuber,
1995; 1997). However, LSTMs are now applied to many
learning problems which differ significantly in scale and
nature from the problems that these improvements were ini-
tially tested on. A systematic study of the utility of various
computational components which comprise LSTMs (see
Figure 1) was missing. This paper fills that gap and sys-
tematically addresses the open question of improving the
LSTM architecture.

We evaluate the most popular LSTM architecture (vanilla
LSTM; Section 2) and eight different variants thereof on
three benchmark problems: acoustic modeling, handwrit-

ar
X

iv
:1

50
3.

04
06

9v
1

 [
cs

.N
E

]
 1

3
M

ar
 2

01
5

LSTM: A Search Space Odyssey

unweighted connection

Legend

weighted connection

connection with time-lag

mutliplication

+ sum over all inputs

branching point

gate activation function
(always sigmoid)

+

+

+

+

forget gate

input gate

block input

cell
+

output gate

peepholes

LSTM block

g

h

...

input

...

...

...

...

...

...

...

...

recurrent

...

input

recurrent

input

recurrent

input

recurrent

output
recurrent

+

g

SRN
unit

...

input

...
recurrent

...

...
output

recurrent

g input activation function
(usually tanh)

h
output activation function
(usually tanh)

block output

Figure 1. Detailed schematic of the Simple Recurrent Network (SRN) unit (left) and a Long Short-Term Memory block (right) as used
in the hidden layers of a recurrent neural network.

ing recognition and polyphonic music modeling. Each one
differs from the vanilla LSTM by a single change. This al-
lows us to isolate the effect of each of these changes on the
performance of the architecture. Random search (Ander-
son, 1953; Solis & Wets, 1981; Bergstra & Bengio, 2012) is
used to find the best performing hyperparameters for each
variant on each problem, enabling a reliable comparison of
the performance of different variants. We also provide in-
sights gained about hyperparameters and their interaction
using fANOVA (Hutter et al., 2014).

2. Vanilla LSTM
The LSTM architecture most commonly used in litera-
ture was originally described by Graves & Schmidhuber
(2005).1 We refer to it as vanilla LSTM and use it as a
reference for comparison of all the variants. The vanilla
LSTM incorporates changes by Gers et al. (1999) and Gers
& Schmidhuber (2000) into the original LSTM (Hochreiter
& Schmidhuber, 1997) and uses full gradient training. Sec-
tion 3 provides descriptions of these major LSTM changes.

A schematic of the vanilla LSTM block can be seen in Fig-
ure 1. It features three gates (input, forget and output),
block input, a single cell (the Constant Error Carousel),
an output activation function, and peephole connections.
The output of the block is recurrently connected back to
the block input and all of the gates.

The vector formulas for a vanilla LSTM layer forward
pass are given below. The corresponding Back-Propagation
Through Time (BPTT) formulas can be found in supple-

1But note that some studies omit peephole connections.

mentary material. Here xt is the input vector at time t, the
W are rectangular input weight matrices, the R are square
recurrent weight matrices, the p are peephole weight vec-
tors and b are bias vectors. Functions σ, g and h are
point-wise non-linear activation functions: logistic sigmoid
(1
1+e−x) is used for as activation function of the gates and

hyperbolic tangent is usually used as the block input and
output activation function. The point-wise multiplication
of two vectors is denoted with �:

zt = g(Wzx
t + Rzy

t−1 + bz) block input

it = σ(Wix
t + Riy

t−1 + pi � ct−1 + bi) input gate

f t = σ(Wfx
t + Rfy

t−1 + pf � ct−1 + bf) forget gate

ct = it � zt + f t � ct−1 cell state

ot = σ(Wox
t + Roy

t−1 + po � ct + bo) output gate

yt = ot � h(ct) block output

3. History of LSTM
3.1. Original Formulation

This initial version of the LSTM block (Hochreiter &
Schmidhuber, 1995; 1997) included (possibly multiple)
cells, input and output gates, but no forget gate and no
peephole connections. The output gate, unit biases, or input
activation function were omitted for certain experiments.
Training was done using a mixture of Real Time Recur-
rent Learning (RTRL) and Backpropogation Through Time
(BPTT). Only the gradient of the cell was propagated back
through time, and the gradient for the other recurrent con-

LSTM: A Search Space Odyssey

nections was truncated. Thus, that study did not use the
exact gradient for training. Another feature of that version
was the use of full gate recurrence, which means that all
the gates received recurrent inputs from all gates at the pre-
vious time-step in addition to the recurrent inputs from the
block outputs. This feature did not appear in any of the
later papers.

3.2. Forget Gate

The first paper to suggest a modification of the LSTM ar-
chitecture introduced the forget gate (Gers et al., 1999), en-
abling the LSTM to reset its own state. This allowed learn-
ing of continual tasks such as embedded Reber grammar.

3.3. Peephole Connections

Gers & Schmidhuber (2000) argued that in order to learn
precise timings, the cell needs to control the gates. So far,
this was only possible through an open output gate. Peep-
hole connections (connections from the cell to the gates,
blue in Figure 1) were added to the architecture in order
to make precise timings easier to learn. Additionally, the
output activation function was omitted, as there was no ev-
idence that it was essential for solving the problems that
LSTM had been tested on so far.

3.4. Full Gradient

The final modification towards the vanilla LSTM was done
by Graves & Schmidhuber (2005). This study presented
the full backpropagation through time (BPTT) training for
LSTM networks with the architecture described in Sec-
tion 2, and presented results on the TIMIT benchmark. Us-
ing full BPTT had the added advantage that LSTM gra-
dients could be checked using finite differences, making
practical implementations more reliable.

3.5. Other Variants

Since its introduction the vanilla LSTM has been the most
commonly used architecture, but other variants have been
suggested too. Before the introduction of full BPTT train-
ing, Gers et al. (2002) utilized a training method based on
Extended Kalman Filtering which enabled the LSTM to be
trained on some pathological cases at the cost of high com-
putational complexity. Schmidhuber et al. (2007) proposed
using a hybrid evolution-based method instead of BPTT for
training but retained the vanilla LSTM architecture.

Bayer et al. (2009) evolved different LSTM block architec-
tures that maximize fitness on context-sensitive grammars.
Sak et al. (2014) introduced a linear projection layer that
projects the output of the LSTM layer down before recur-
rent and forward connections in order to reduce the amount
of parameters for LSTM networks with many blocks. By

introducing a trainable scaling parameter for the slope of
the gate activation functions, Doetsch et al. (2014) were
able to improve the performance of LSTM on an offline
handwriting recognition dataset. In what they call Dynamic
Cortex Memory, Otte et al. (2014) improved convergence
speed of LSTM by adding recurrent connections between
the gates of a single block (but not between the blocks).

Cho et al. (2014) proposed a simplification of the LSTM ar-
chitecture called Gated Recurrent Unit (GRU). They used
neither peephole connections nor output activation func-
tions, and coupled the input and the forget gate into an up-
date gate. Finally, their output gate (called reset gate) only
gates the recurrent connections to the block input (Wz).
Chung et al. (2014) performed an initial comparison be-
tween GRU and LSTM and reported mixed results.

4. Evaluation Setup
The focus of our study is to compare different LSTM vari-
ants, and not to achieve state-of-the-art results. Therefore,
our experiments are designed to keep the setup simple and
the comparisons fair. The vanilla LSTM is used as a base-
line and evaluated together with eight of its variants. Each
variant adds, removes or modifies the baseline in exactly
one aspect, which allows to isolate their effect. Three dif-
ferent datasets from different domains are used to account
for cross-domain variations.

Since hyperparameter space is large and impossible to tra-
verse completely, random search was used in order to ob-
tain the best-performing hyperparameters (Bergstra & Ben-
gio, 2012) for every combination of variant and dataset.
Thereafter, all analyses focused on the 10% best perform-
ing trials for each variant and dataset (Section 5.1), making
the results representative for the case of reasonable hyper-
parameter tuning efforts. Random search was also chosen
for the added benefit of providing enough data for analyz-
ing the general effect of various hyperparameters on the
performance of each LSTM variant (Section 5.2).

4.1. Datasets

Each dataset is split into three parts: a training set, a valida-
tion set, which is used for early stopping and for optimizing
the hyperparameters, and a test set for the final evaluation.
Details of preprocessing for each dataset are provided in
the supplementary material.

4.1.1. TIMIT

The TIMIT Speech corpus (Garofolo et al., 1993) is large
enough to be a reasonable acoustic modeling benchmark
for speech recognition, yet it is small enough to keep a
large study such as ours manageable. Our experiments fo-
cus on the frame-wise classification task for this dataset,

LSTM: A Search Space Odyssey

where the objective is to classify each audio-frame as one
of 61 phones. The performance is measured as classifica-
tion error percentage. The training, testing and validation
sets are split in line with Halberstadt (1998) into 3696, 400
and 192 sequences, having 304 frames on average.

4.1.2. IAM ONLINE

The IAM Online Handwriting Database (Liwicki & Bunke,
2005) consists of English sentences as time series of pen
movements that have to be mapped to characters. The net-
work uses four input features: the change in x and y pen po-
sitions, the time since the current stroke started and a binary
value indicating whether the pen is lifted. The performance
is measured in terms of the Character Error Rate (CER) af-
ter decoding. The size of the dataset was halved by sub-
sampling, which makes the experiments to run 2× faster
without harming the performance. The training, testing and
validation sets contained 5355, 2956, 3859 sequences with
an average length of 334 frames.

4.1.3. JSB CHORALES

JSB Chorales (Allan & Williams, 2005) is a polyphonic
music modeling dataset. The preprocessed data consists of
sequences of binary vectors and the task is next-step pre-
diction. The performance metric used is the negative log-
likelihood on the validation/test set. The complete dataset
consists of 229, 76, and 77 sequences respectively with an
average length of 61.

4.2. Network Architectures & Training

Bidirectional LSTM (Graves & Schmidhuber, 2005),
which consists of two hidden layers, one processing the
input forwards and the other one backwards in time, both
connected to a single softmax output layer, was used for
TIMIT and IAM Online tasks. A normal LSTM with one
hidden layer and a sigmoid output layer was used for the
JSB Chorales task. As loss function we employed Cross-
Entropy Error for TIMIT and JSB Chorales, while for the
IAM Online task the Connectionist Temporal Classification
(CTC) Error by Graves et al. (2006) was used. The initial
weights for all networks were drawn from a normal dis-
tribution with standard deviation of 0.1. Training was done
using Stochastic Gradient Descent with Nesterov-style mo-
mentum (Sutskever et al., 2013) with updates after each
sequence. The learning rate was rescaled by a factor of
(1 − momentum). Gradients were computed using full
BPTT for LSTMs (Graves & Schmidhuber, 2005). Train-
ing stopped after 150 epochs or once there was no improve-
ment on the validation set for more than fifteen epochs.

4.3. LSTM Variants

The vanilla LSTM from Section 2 is referred as Vanilla (V).
The derived eight variants of the V architecture are the fol-
lowing:

1. No Input Gate (NIG)
2. No Forget Gate (NFG)
3. No Output Gate (NOG)
4. No Input Activation Function (NIAF)
5. No Output Activation Function (NOAF)
6. No Peepholes (NP)
7. Coupled Input and Forget Gate (CIFG)
8. Full Gate Recurrence (FGR)

The first six variants are self-explanatory. The CIFG vari-
ant uses only one gate for gating both the input and the cell
recurrent self-connection (an LSTM modification proposed
in GRU (Cho et al., 2014)). This is equivalent to setting
ft = 1− it instead of learning the forget gate weights in-
dependently. The FGR variant adds recurrent connections
between all the gates as in the original formulation of the
LSTM (Hochreiter & Schmidhuber, 1997). It adds nine
additional recurrent weight matrices, thus significantly in-
creasing the number of parameters.

4.4. Hyperparameter Search

While there are other methods to efficiently search for good
hyperparameters (cf. Snoek et al. 2012; Hutter et al. 2011),
random search has a couple of advantages for our setting:
it is easy to implement, trivial to parallelize and covers
the search space more uniformly, thereby improving the
follow-up analysis of hyperparameter importance.

Each hyperparameter search consists of 200 trials (for a
total of 5400 trials) of randomly sampling the following
hyperparameters:

• number of LSTM blocks per hidden layer: log-uniform
samples from [20, 200];

• learning rate: log-uniform samples from [10−6, 10−2];
• momentum: 1− log-uniform samples from [0.01, 1.0];
• standard deviation of Gaussian input noise: uniform

samples from [0, 1].

In the case of the TIMIT dataset, two additional (boolean)
hyperparameters were considered (not tuned for the other
two datasets):

The first one was the choice between traditional momen-
tum and Nesterov-style momentum (Sutskever et al., 2013).
Our analysis showed that this had no measurable effect
on performance so the latter was arbitrarily chosen for all

LSTM: A Search Space Odyssey

further experiments. The second one was whether to clip
the gradients to the range [−1, 1]. This turned out to hurt
overall performance,2 therefore the gradients were never
clipped in the case of the other two datasets.

Note that, unlike an earlier small scale study (Chung et al.,
2014), the number of parameters was not kept fixed for all
variants. Since different variants can utilize their parame-
ters differently, fixing this number can bias comparisons.

5. Results & Discussion
Each of the 5400 experiments was run on one of 128 AMD
Opteron CPUs at 2.5 GHz and took 24.3 h on average to
complete. This sums up to a total single-CPU computa-
tion time of just below 15 years. For TIMIT and JSB
Chorales the test set performance of the best setup were
29.6% classification error (CIFG) and a log-likelihood of
-8.38 (NIG) respectively. For the IAM Online dataset our
best result was a Character Error Rate of 9.26% (NP) on
the test set. The best previously published result is 11.5%
CER by Graves et al. (2008) using a different and much
more extensive preprocessing. 3

5.1. Comparison of the Variants

The twenty best runs (according to validation set perfor-
mance) for each variant were compared with those for the
baseline architecture (V). Welch’s t-test at a significance
level of p = 0.05 was used4 to determine whether the mean
test set performance of each variant was significantly dif-
ferent from that of the baseline. A summary of the results is
shown in Figure 2. The box for each variant for which the
mean differs significantly from the baseline is highlighted
in blue. The mean number of parameters used by those
twenty best performing networks are also shown as grey
bar plots in the background.

5.1.1. GENERAL OBSERVATIONS

The first important observation based on Figure 2 is that
removing the output activation function (NOAF) or the for-
get gate (NFG) significantly hurt performance on all three
datasets. Apart from the CEC, the ability to forget old in-
formation and the squashing of the cell state appear to be
critical for the LSTM architecture. Indeed, without the out-

2Although this may very well be the result of the range having
been chosen too tightly.

3Note that these numbers differ from the best test-set perfor-
mances that can be found in Figure 2. This is the case because
here we only report the single best performing setup as deter-
mined on the validation set. In Figure 2 on the other hand we
show the test-set performance of the 20 best setups for each vari-
ant.

4We applied the Bonferroni adjustment to correct for perform-
ing eight different tests (one for each variant).

V CIFG FGR NP NOG NIAF NIG NFG NOAF

27

28

29

30

31

32

33

34

35

cl
as

si
fic

at
io

n
er

ro
r

in
%

TIMIT

10

15

20

25

30

ch
ar

ac
te

r
er

ro
r

ra
te

IAM Online

V CIFG FGR NP NOG NIAF NIG NFG NOAF

8.4

8.5

8.6

8.7

8.8

ne
ga

ti
ve

lo
g-

lik
el

ih
oo

d

JSB Chorales

1

2

3

4

5

nu
m

be
r

of
pa

ra
m

et
er

s
∗1

0
5

0.5

1.0

1.5

2.0

2.5

3.0

nu
m

be
r

of
pa

ra
m

et
er

s
∗1

0
5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

nu
m

be
r

of
pa

ra
m

et
er

s
∗1

05

Figure 2. Test set performance for top 10% (according to the val-
idation set) hyperparameter settings for each dataset and variant.
Boxes show the range between the 25th and the 75th percentile of
the data, while the whiskers indicate the whole range. The red dot
represents the mean and the red line the median of the data. The
boxes of variants that differ significantly from the vanilla LSTM
are shown in blue with thick lines. The grey histogram in the
background presents the average number of parameters for the
top 10% performers of every variant. Figure best viewed in color.

LSTM: A Search Space Odyssey

Figure 3. Pie charts showing which fraction of variance of the test
set performance can be attributed to each of the hyperparameters.
The percentage of variance that is due to interactions between
multiple parameters is indicated as “higher order.”

put activation function, the block output can in principle
grow unbounded. Coupling the input and the forget gate
avoids this problem and might render the use of an out-
put non-linearity less important, which could explain why
GRU performs well without it.

Input and forget gate coupling (CIFG) did not significantly
change mean performance on any of the datasets, although
the best performance improved slightly on music mod-
elling. Similarly, removing peephole connections (NP) also
did not lead to significant changes, but the best perfor-
mance improved slightly for handwriting recognition. Both
of these variants simplify LSTMs and reduce the computa-
tional complexity, so it might be worthwhile to incorporate
these changes into the architecture.

Adding full gate recurrence (FGR) did not significantly
change performance on TIMIT or IAM Online, but led to
worse results on the JSB Chorales dataset. Given that this
variant greatly increases the number of parameters, we gen-
erally advice against using it. Note that this feature was
present in the original proposal of the LSTM (Hochreiter
& Schmidhuber, 1995; 1997), but has been absent in all
following studies.

5.1.2. TASK-SPECIFIC OBSERVATIONS

Removing the input gate (NIG), the output gate (NOG) and
the input activation function (NIAF) led to a significant re-
duction in performance on speech and handwriting recog-
nition. However, there was no significant effect on music
modelling performance. A small (but statistically insignif-

icant) average performance improvement was observed for
the NIG and NIAF architectures on music modeling. We
hypothesize that these behaviors will generalize to simi-
lar problems such as language modeling. For supervised
learning on continuous real-valued data (such as speech
and handwriting recognition), the input gate, output gate
and input activation function are all crucial for obtaining
good performance.

5.2. Impact of Hyperparameters

The fANOVA framework for assesing hyperparameter im-
portance by Hutter et al. (2014) is based on the observation
that marginalizing over dimensions can be done efficiently
in regression trees. This allows predicting the marginal er-
ror for one hyperparameter while averaging over all the oth-
ers. Traditionally this would require a full hyperparameter
grid search, whereas here the hyperparameter space can be
sampled at random.

Average performance for any slice of the hyperparameter
space is obtained by first training a regression tree and then
summing over its predictions along the corresponding sub-
set of dimensions. To be precise, a random regression-
forest of 100 trees is trained and their prediction perfor-
mance is averaged. This improves the generalization and
allows for an estimation of uncertainty of those predictions.
The obtained marginals can then be used to decompose
the variance into additive components using the functional
ANalysis Of VAriance (fANOVA) method (Hooker, 2007)
which provides an insight into the overall importance of
hyperparameters and their interactions.

5.2.1. ANALYSIS OF VARIANCE

Figure 3 shows what fraction of the test set performance
variance can be attributed to different hyperparameters. It
is obvious that the learning rate is by far the most impor-
tant hyperparameter, always accounting for more than two
thirds of the variance. The next most important hyper-
parameter is the hidden layer size, followed by the input
noise, leaving the momentum with less than one percent of
the variance. Higher order interactions play an important
role in the case of TIMIT, but are much less important for
the other two data sets. The hyperparameter interplay is
further discussed in Section 5.2.6.

5.2.2. LEARNING RATE

Learning rate is the most important hyperparameter, there-
fore it is very important to understand how to set it correctly
in order to achieve good performance. Figure 4 shows (in
blue) how setting the learning rate value affects the pre-
dicted average performance on the test set. It is important
to note that this is an average over all other hyperparam-
eters and over all the trees in the regression-forest. The

LSTM: A Search Space Odyssey

shaded area around the curve indicates the standard devia-
tion over tree predictions (not over other hyperparameters),
thus quantifying the reliability of the average. The same is
shown in green with the predicted average training time.

The plots in Figure 3 show that the optimal value for the
learning rate is dependent on the dataset. For each dataset,
there is a large basin (up to two orders of magnitude) of
good learning rates inside of which the performance does
not vary much. A related but unsurprising observation is
that there is a sweet-spot for the learning rate at the high
end of the basin.5 In this region, the performance is good
and the training time is small. So while searching for a
good learning rate for the LSTM, it is sufficient to do a
coarse search by starting with a high value (e.g. 1.0) and
dividing it by ten until performance stops increasing.

Figure 3 also shows that the fraction of variance caused
by the learning rate is much bigger than the fraction due
to interaction between learning rate and hidden layer size
(some part of the “higher order” piece, for more see Sec-
tion 5.2.6). This suggests that the learning rate can be
quickly tuned on a small network and then used to train
a large one.

5.2.3. HIDDEN LAYER SIZE

Not surprisingly the hidden layer size is an important hy-
perparameter affecting the LSTM network performance.
As expected, larger networks perform better, and the re-
quired training time increases with the network size.

5.2.4. INPUT NOISE

Additive Gaussian noise on the inputs, a traditional regular-
izer for neural networks, has been used for LSTM as well.
However, we find that not only does it almost always hurt
performance, it also slightly increases training times. The
only exception is TIMIT, where a small dip in error for the
range of [0.2, 0.5] is observed.

5.2.5. MOMENTUM

One unexpected result of this study is that momentum af-
fects neither performance nor training time in any signifi-
cant way. This follows from the observation that for none
of the datasets, momentum accounted for more than 1% of
the variance of test set performance. It should be noted that
for TIMIT the interaction between learning rate and mo-
mentum accounts for 2.5% of the total variance, but as with
learning rate × hidden size (cf. Section 5.2.6) it does not
reveal any interpretable structure. This may be the result of
our choice to scale learning rates dependent on momentum
(Section 4.2). These observations suggest that momentum

5Note that it is outside the plotted range for IAM Online and
JSB Chorales.

Figure 5. Left: The predicted marginal error for combinations of
learning rate and hidden size. Right: The component that is
solely due to the interaction of the two and cannot be attributet
to changes in one of them alone. In other words the difference to
the case of them being perfectly independent. (Blue is better than
red.)

does not offer substantial benefits when training LSTMs
with online stochastic gradient descent. It may, however,
be more important in the case of batch training, where the
gradients are less noisy.

5.2.6. INTERACTION OF HYPERPARAMETERS

Here we focus on the higher order interactions for the
TIMIT dataset, for which they were strongest, but our anal-
ysis revealed very similar behavior for the other datasets:

learning rate× hidden size = 6.7%

learning rate× input noise = 4.4%

hidden size× input noise = 2.0%

learning rate×momentum = 1.5%

momentum× hidden size = 0.6%

momentum× input noise = 0.4%

The interaction between learning rate and the hidden size
is the strongest one, but Figure 5 does not reveal any sys-
tematic dependence between the two. In fact it may be the
case that more samples would be needed in order to prop-
erly analyse the fine interplay between them, but given our
observations so far this might not be worth the effort. In
any case, it is clear that varying the hidden size does not
change the region of optimal learning rate.

6. Conclusion
This paper reports the results of a large scale study on vari-
ations of the LSTM architecture. We conclude that:

• The most commonly used LSTM architecture (vanilla
LSTM) performs reasonably well on various datasets
and using any of eight possible modifications does not
significantly improve the LSTM performance.

LSTM: A Search Space Odyssey

30

35

40

45

50

55

60

65
C

la
ss

if
ic

a
ti

o
n
 E

rr
o
r

34

36

38

40

42

44

46 TIMIT

37

38

39

40

41

42

43

20

40

60

80

100

C
h
a
ra

ct
e
r

E
rr

o
r

R
a
te

40

50

60

70

80

90

100 IAM Online

44

46

48

50

52

54

56

58

10-6 10-5 10-4 10-3 10-2

learning rate

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

N
e
g
a
ti

v
e
 L

o
g
 L

ik
e
lih

o
o
d

error

time

20 40 60 80 100 120 140 160 180 200

hidden size

9.70

9.75

9.80

9.85

9.90

9.95

10.00

10.05

10.10

10.15 JSB Chorales

0.0 0.2 0.4 0.6 0.8 1.0

input noise standard deviation

9.5

9.6

9.7

9.8

9.9

10.0

10.1

10.2

0

5

10

15

20

25

30

35

40

45

0

20

40

60

80

100

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

5

10

15

20

25

30

35

40

0

20

40

60

80

100

0.0

0.5

1.0

1.5

2.0

2.5

3.0

17.0

17.5

18.0

18.5

19.0

19.5

20.0

20.5

21.0

21.5

to
ta

l
ti

m
e
 i
n
 h

26

27

28

29

30

31

32

33

34

to
ta

l
ti

m
e
 i
n
 h

0.40

0.45

0.50

to
ta

l
ti

m
e
 i
n
 h

Figure 4. Predicted marginal error (blue) and marginal time for different values of the learning rate, hidden size, and the input noise
(columns) for all three datasets (rows). The shaded area indicates the standard deviation between the tree-predicted marginals and thus
indicating the reliability of the predicted mean performance. Note that each plot is for the vanilla LSTM but curves for all variants that
are not significantly worse look very similar.

• Certain modifications such as coupling the input
and forget gates or removing peephole connections
simplify LSTM without significantly hurting perfor-
mance.

• The forget gate and the output activation function are
the critical components of the LSTM block. While
the first is crucial for LSTM performance, the second
is necessary whenever the cell state is unbounded.

• Learning rate and network size are the most crucial
tunable LSTM hyperparameters. Surprisingly, the use
of momentum was found to be unimportant (in our set-
ting of online gradient descent). Gaussian noise on the
inputs was found to be moderately helpful for TIMIT,
but harmful for other datasets.

• The analysis of hyperparameter interactions revealed
that even the highest measured interaction (between
learning rate and network size) is quite small. This
implies that the hyperparameters can be tuned inde-
pendently. In particular, the learning rate can be cali-
brated first using a fairly small network, thus saving a
lot of experimentation time.

Neural networks can be tricky to use for many practition-
ers compared to other methods whose properties are al-
ready well understood. This has remained a hurdle for

newcomers to the field since a lot of practical choices are
based on the intuitions of experts, and experiences gained
over time. With this study, we have attempted to back
some of these intuitions with experimental results. We have
also presented new insights, both on architecture selection
and hyperparameter tuning for LSTM networks which have
emerged as the method of choice for solving complex se-
quence learning problems. In future work, we will explore
more complex modifications of the LSTM architecture.

Acknowledgments
This research was supported by the Swiss National Sci-
ence Foundation grants “Theory and Practice of Rein-
forcement Learning 2” (#138219) and “Advanced Re-
inforcement Learning” (#156682), and by EU projects
“NASCENCE” (FP7-ICT-317662) and “NeuralDynamics”
(FP7-ICT-270247).

References
Allan, Moray and Williams, Christopher KI. Harmonising

chorales by probabilistic inference. Advances in neural
information processing systems, 17:25–32, 2005.

Anderson, R. L. Recent Advances in Finding Best Op-
erating Conditions. Journal of the American Statistical

LSTM: A Search Space Odyssey

Association, 48(264):789–798, December 1953. ISSN
0162-1459. doi: 10.2307/2281072. URL http://
www.jstor.org/stable/2281072.

Bayer, Justin, Wierstra, Daan, Togelius, Julian, and
Schmidhuber, Jürgen. Evolving memory cell struc-
tures for sequence learning. In Artificial Neural Net-
works–ICANN 2009, pp. 755–764. Springer, 2009.
URL http://link.springer.com/chapter/
10.1007/978-3-642-04277-5_76.

Bengio, Y., Simard, P., and Frasconi, P. Learning long-term
dependencies with gradient descent is difficult. IEEE
Transactions on Neural Networks, 5(2):157–166, March
1994. ISSN 1045-9227. doi: 10.1109/72.279181.

Bergstra, James and Bengio, Yoshua. Random search for
hyper-parameter optimization. The Journal of Machine
Learning Research, 13(1):281–305, 2012. URL http:
//dl.acm.org/citation.cfm?id=2188395.

Cho, Kyunghyun, van Merrienboer, Bart, Gulcehre, Caglar,
Bougares, Fethi, Schwenk, Holger, and Bengio, Yoshua.
Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation. arXiv
preprint arXiv:1406.1078, 2014. URL http://
arxiv.org/abs/1406.1078.

Chung, Junyoung, Gulcehre, Caglar, Cho, KyungHyun,
and Bengio, Yoshua. Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling.
arXiv:1412.3555 [cs], December 2014. URL http:
//arxiv.org/abs/1412.3555.

Doetsch, Patrick, Kozielski, Michal, and Ney, Hermann.
Fast and robust training of recurrent neural networks for
offline handwriting recognition. In 14th International
Conference on Frontiers in Handwriting Recognition,
2014. URL http://people.sabanciuniv.
edu/berrin/cs581/Papers/icfhr2014/
data/4334a279.pdf.

Donahue, Jeff, Hendricks, Lisa Anne, Guadarrama, Sergio,
Rohrbach, Marcus, Venugopalan, Subhashini, Saenko,
Kate, and Darrell, Trevor. Long-term Recurrent Convo-
lutional Networks for Visual Recognition and Descrip-
tion. arXiv:1411.4389 [cs], November 2014. URL
http://arxiv.org/abs/1411.4389. arXiv:
1411.4389.

Fan, Yuchen, Qian, Yao, Xie, Fenglong, and Soong,
Frank K. TTS synthesis with bidirectional LSTM based
recurrent neural networks. In Proc. Interspeech, 2014.

Garofolo, JS, Lamel, LF, Fisher, WM, Fiscus, JG, Pal-
lett, DS, and Dahlgren, NL. DARPA TIMIT Acoustic-
Phonetic Continuous Speech Corpus CD-ROM. Na-

tional Institute of Standards and Technology, NTIS Or-
der No PB91-505065, 1993.

Gers, Felix A. and Schmidhuber, Jürgen. Recurrent nets
that time and count. In Neural Networks, 2000. IJCNN
2000, Proceedings of the IEEE-INNS-ENNS Interna-
tional Joint Conference on, volume 3, pp. 189–194.
IEEE, 2000. ISBN 0769506194.

Gers, Felix A., Schmidhuber, Jürgen, and Cummins, Fred.
Learning to forget: Continual prediction with LSTM. In
Artificial Neural Networks, 1999. ICANN 99. Ninth In-
ternational Conference on (Conf. Publ. No. 470), vol-
ume 2, pp. 850–855, 1999.

Gers, Felix A., Pérez-Ortiz, Juan Antonio, Eck, Douglas,
and Schmidhuber, Jürgen. DEFK-LSTM. In ESANN
2002, Proceedings of the 10th Eurorean Symposium on
Artificial Neural Networks, 2002.

Graves, A, Liwicki, M, Fernandez, S, Bertolami, R, Bunke,
H, and Schmidhuber, J. A Novel Connectionist System
for Improved Unconstrained Handwriting Recognition.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 31(5), 2009.

Graves, Alex and Schmidhuber, Jürgen. Framewise
phoneme classification with bidirectional LSTM
and other neural network architectures. Neural
Networks, 18(5–6):602–610, July 2005. ISSN 0893-
6080. doi: 10.1016/j.neunet.2005.06.042. URL
http://www.sciencedirect.com/science/
article/pii/S0893608005001206.

Graves, Alex, Fernández, Santiago, Gomez, Faustino, and
Schmidhuber, Jürgen. Connectionist temporal classifi-
cation: labelling unsegmented sequence data with recur-
rent neural networks. In Proceedings of the 23rd inter-
national conference on Machine learning, pp. 369–376,
2006. URL http://dl.acm.org/citation.
cfm?id=1143891.

Graves, Alex, Liwicki, Marcus, Bunke, Horst, Schmidhu-
ber, Jürgen, and Fernández, Santiago. Unconstrained on-
line handwriting recognition with recurrent neural net-
works. In Advances in Neural Information Processing
Systems, pp. 577–584, 2008.

Graves, Alex, Mohamed, Abdel-rahman, and Hinton, Ge-
offrey. Speech recognition with deep recurrent neural
networks. arXiv preprint arXiv:1303.5778, 2013. URL
http://arxiv.org/abs/1303.5778.

Halberstadt, Andrew K. Heterogeneous acoustic mea-
surements and multiple classifiers for speech recogni-
tion. PhD thesis, Massachusetts Institute of Technology,
1998.

http://www.jstor.org/stable/2281072
http://www.jstor.org/stable/2281072
http://link.springer.com/chapter/10.1007/978-3-642-04277-5_76
http://link.springer.com/chapter/10.1007/978-3-642-04277-5_76
http://dl.acm.org/citation.cfm?id=2188395
http://dl.acm.org/citation.cfm?id=2188395
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://people.sabanciuniv.edu/berrin/cs581/Papers/icfhr2014/data/4334a279.pdf
http://people.sabanciuniv.edu/berrin/cs581/Papers/icfhr2014/data/4334a279.pdf
http://people.sabanciuniv.edu/berrin/cs581/Papers/icfhr2014/data/4334a279.pdf
http://arxiv.org/abs/1411.4389
http://www.sciencedirect.com/science/article/pii/S0893608005001206
http://www.sciencedirect.com/science/article/pii/S0893608005001206
http://dl.acm.org/citation.cfm?id=1143891
http://dl.acm.org/citation.cfm?id=1143891
http://arxiv.org/abs/1303.5778

LSTM: A Search Space Odyssey

Hochreiter, Sepp. Untersuchungen zu dynamischen neu-
ronalen Netzen. Masters Thesis, Technische Universität
München, München, 1991.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long
Short Term Memory. Technical Report FKI-207-95,
Technische Universität München, München, August
1995. URL http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.51.3117.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long Short-
Term Memory. Neural Computation, 9(8):1735–1780,
November 1997. ISSN 0899-7667. doi: 10.1162/neco.
1997.9.8.1735. URL http://www.bioinf.jku.
at/publications/older/2604.pdf.

Hooker, Giles. Generalized Functional ANOVA Diag-
nostics for High-Dimensional Functions of Dependent
Variables. Journal of Computational and Graphical
Statistics, 16(3):709–732, September 2007. ISSN 1061-
8600, 1537-2715. doi: 10.1198/106186007X237892.
URL http://www.tandfonline.com/doi/
abs/10.1198/106186007X237892.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. Sequential
Model-Based Optimization for General Algorithm Con-
figuration. In Proc. of LION-5, pp. 507523, 2011.

Hutter, Frank, Hoos, Holger, and Leyton-Brown, Kevin.
An Efficient Approach for Assessing Hyperpa-
rameter Importance. pp. 754–762, 2014. URL
http://jmlr.org/proceedings/papers/
v32/hutter14.html.

Liwicki, Marcus and Bunke, Horst. IAM-OnDB-an on-line
English sentence database acquired from handwritten
text on a whiteboard. In Document Analysis and Recog-
nition, 2005. Proceedings. Eighth International Confer-
ence on, pp. 956–961. IEEE, 2005.

Luong, Thang, Sutskever, Ilya, Le, Quoc V., Vinyals, Oriol,
and Zaremba, Wojciech. Addressing the Rare Word
Problem in Neural Machine Translation. arXiv preprint
arXiv:1410.8206, 2014. URL http://arxiv.org/
abs/1410.8206.

Marchi, E., Ferroni, G., Eyben, F., Gabrielli, L., Squar-
tini, S., and Schuller, B. Multi-resolution linear predic-
tion based features for audio onset detection with bidi-
rectional LSTM neural networks. In 2014 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 2164–2168, May 2014. doi:
10.1109/ICASSP.2014.6853982.

Otte, Sebastian, Liwicki, Marcus, and Zell, An-
dreas. Dynamic Cortex Memory: Enhancing Re-
current Neural Networks for Gradient-Based Se-
quence Learning. In Artificial Neural Networks

and Machine Learning – ICANN 2014, number
8681 in Lecture Notes in Computer Science, pp.
1–8. Springer International Publishing, September
2014. ISBN 978-3-319-11178-0, 978-3-319-11179-7.
URL http://link.springer.com/chapter/
10.1007/978-3-319-11179-7_1.

Pham, Vu, Bluche, Théodore, Kermorvant, Christopher,
and Louradour, Jérôme. Dropout improves Recur-
rent Neural Networks for Handwriting Recognition.
arXiv:1312.4569 [cs], November 2013. URL http:
//arxiv.org/abs/1312.4569.

Sak, Hasim, Senior, Andrew, and Beaufays, Françoise.
Long short-term memory recurrent neural network archi-
tectures for large scale acoustic modeling. In Proceed-
ings of the Annual Conference of International Speech
Communication Association (INTERSPEECH), 2014.
URL http://193.6.4.39/˜czap/letoltes/
IS14/IS2014/PDF/AUTHOR/IS141304.PDF.

Schmidhuber, J, Wierstra, D, Gagliolo, M, and Gomez,
F J. Training Recurrent Networks by EVOLINO. Neural
Computation, 19(3):757–779, 2007.

Snoek, Jasper, Larochelle, Hugo, and Adams, Ryan P.
Practical Bayesian Optimization of Machine Learning
Algorithms. In Pereira, F., Burges, C. J. C., Bottou, L.,
and Weinberger, K. Q. (eds.), Advances in Neural Infor-
mation Processing Systems 25, pp. 2951–2959. Curran
Associates, Inc., 2012.

Solis, Francisco J. and Wets, Roger J.-B. Mini-
mization by Random Search Techniques. Mathe-
matics of Operations Research, 6(1):19–30, February
1981. ISSN 0364-765X. doi: 10.1287/moor.6.1.
19. URL http://pubsonline.informs.org/
doi/abs/10.1287/moor.6.1.19.

Sønderby, Søren Kaae and Winther, Ole. Protein Sec-
ondary Structure Prediction with Long Short Term Mem-
ory Networks. arXiv:1412.7828 [cs, q-bio], Decem-
ber 2014. URL http://arxiv.org/abs/1412.
7828. arXiv: 1412.7828.

Sutskever, Ilya, Martens, James, Dahl, George, and Hin-
ton, Geoffrey. On the importance of initialization and
momentum in deep learning. In JMLR, pp. 1139–1147,
2013. URL http://jmlr.org/proceedings/
papers/v28/sutskever13.html.

Zaremba, Wojciech, Sutskever, Ilya, and Vinyals,
Oriol. Recurrent Neural Network Regularization.
arXiv:1409.2329 [cs], September 2014. URL http:
//arxiv.org/abs/1409.2329.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.3117
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.3117
http://www.bioinf.jku.at/publications/older/2604.pdf
http://www.bioinf.jku.at/publications/older/2604.pdf
http://www.tandfonline.com/doi/abs/10.1198/106186007X237892
http://www.tandfonline.com/doi/abs/10.1198/106186007X237892
http://jmlr.org/proceedings/papers/v32/hutter14.html
http://jmlr.org/proceedings/papers/v32/hutter14.html
http://arxiv.org/abs/1410.8206
http://arxiv.org/abs/1410.8206
http://link.springer.com/chapter/10.1007/978-3-319-11179-7_1
http://link.springer.com/chapter/10.1007/978-3-319-11179-7_1
http://arxiv.org/abs/1312.4569
http://arxiv.org/abs/1312.4569
http://193.6.4.39/~czap/letoltes/IS14/IS2014/PDF/AUTHOR/IS141304.PDF
http://193.6.4.39/~czap/letoltes/IS14/IS2014/PDF/AUTHOR/IS141304.PDF
http://pubsonline.informs.org/doi/abs/10.1287/moor.6.1.19
http://pubsonline.informs.org/doi/abs/10.1287/moor.6.1.19
http://arxiv.org/abs/1412.7828
http://arxiv.org/abs/1412.7828
http://jmlr.org/proceedings/papers/v28/sutskever13.html
http://jmlr.org/proceedings/papers/v28/sutskever13.html
http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1409.2329

Supplementary Material for LSTM: A Search Space Odyssey

A. LSTM formulas
Here we repeat the vectorized formulas for a vanilla LSTM
layer forward pass from the paper, and then present the for-
mulas for the backward pass. We also provide formulas for
all the studied variants.

A.1. Forward Pass

Here we reproduce the formulas of the forward pass from
the paper, but we split all gates and the block input into
activity before (?̄) and after non-linearity (?).

Let N be the number of LSTM blocks and M the number
of inputs. Then we get the following weights:

• Input weights: Wz , Ws, Wf , Wo ∈ RN×M

• Recurrent weights: Rz , Rs, Rf , Ro ∈ RN×N

• Peephole weights: ps, pf , po ∈ RN

• Bias weights: bz , bs, bf , bo ∈ RN

As in the paper we have xt as the input vector at time t,
σ, g and h are pointwise non-linear functions with σ(x) =

1
1+e−x being the logistic sigmoid. The pointwise multipli-
cation of two vectors is denoted with �.

z̄t = Wzx
t + Rzy

t−1 + bz

zt = g(z̄t) block input

īt = Wix
t + Riy

t−1 + pi � ct−1 + bi

it = σ(̄it) input gate

f̄ t = Wfx
t + Rfy

t−1 + pf � ct−1 + bf

f t = σ(f̄ t) forget gate

ct = zt � it + ct−1 � f t cell

ōt = Wox
t + Roy

t−1 + po � ct + bo

ot = σ(ōt) output gate

yt = h(ct)� ot block output

A.2. Backpropagation Through Time

Here ∆t is the vector of deltas passed down from the layer
above. If E is the loss function it formally corresponds

to ∂E
∂yt , but not including the recurrent dependencies. The

deltas inside the LSTM block are then calculated as fol-
lows:

δyt = ∆t + RT
z δz

t+1 + RT
i δi

t+1 + RT
f δf

t+1 + RT
o δo

t+1

δot = δyt � h(ct)� σ′(ōt)

δct = δyt � ot � h′(ct) + po � δot + pi � δit+1

+ pf � δf t+1 + δct+1 � f t+1

δf t = δct � ct−1 � σ′(f̄ t)
δit = δct � zt � σ′(̄it)
δzt = δct � it � g′(z̄t)

The deltas for the inputs are only needed if there is a layer
below that needs training:

δxt = WT
z δz

t + WT
i δi

t + WT
f δf

t + WT
o δo

t

Finally the gradients for the weights are calculated like this,
where again ? can be any of {z, i, f ,o}:

δW? =

T∑
t=0

〈δ?t,xt〉 δpi =

T−1∑
t=0

ct � δit+1

δR? =

T−1∑
t=0

〈δ?t+1,yt〉 δpf =

T−1∑
t=0

ct � δf t+1

δb? =

T∑
t=0

δ?t δpo =

T∑
t=0

ct � δot

Here 〈?1, ?2〉 denotes the outer product of two vectors.

Supplementary Material for LSTM: A Search Space Odyssey

A.3. Variants

We only report differences to the formulas from Sec-
tion A.1:

1. No Input Gate (NOG): it = 1

2. No Forget Gate (NFG): f t = 1

3. No Output Gate (NIG): ot = 1

4. No Input Activation Function (NIAF): g(x) = x

5. No Output Activation Function (NOAF): h(x) = x

6. Coupled Input and Forget Gate (CIFG):

f t = 1− it

7. No Peepholes (NP):

īt = Wix
t + Riy

t−1 + bi

f̄ t = Wfx
t + Rfy

t−1 + bf

ōt = Wox
t + Roy

t−1 + bo

8. Full Gate Recurrence (FGR):

īt =Wix
t + Riy

t−1 + pi � ct−1 + bi

+ Riii
t−1 + Rfif

t−1 + Roio
t−1

f̄ t =Wfx
t + Rfy

t−1 + pf � ct−1 + bf

+ Rif i
t−1 + Rff f

t−1 + Rofo
t−1

ōt =Wox
t + Roy

t−1 + po � ct−1 + bo

+ Rioi
t−1 + Rfof

t−1 + Rooo
t−1

B. Datasets
This section provides details on the datasets and their pre-
processing that were used in the LSTM comparison tasks.

B.1. TIMIT

We use the TIMIT Speech corpus (Garofolo et al., 1993) for
framewise phone classification. The full set of 61 phones
were used as targets. From the raw audio we extract 12 Mel
Frequency Cepstrum Coefficients (MFCCs) (Mermelstein,
1976) + energy over 25ms hamming-windows with stride
of 10ms and a pre-emphasis coefficient of 0.97. These 13
inputs along with their first and second derivatives com-
prise the 39 inputs to the network and are normalized to
have mean 0 and variance of 1.

We restrict our study to an established subset of the full
TIMIT corpus as detailed by Halberstadt (1998). In short
that means we only use the core tests set and drop the SA
samples from the training set. For validation we use some
of the discarded samples from the full test set.

(a)

Ben Zoma said: "The days of 1thy

life means in the day-time; all the days

of 1thy life means even at night-time ."

(Berochoth .) And the Rabbis thought

it important that when we read the

(b)

Figure 6. (a) Example board (a08-551z, training set) from the
IAM-OnDB dataset and (b) its transcription into character label
sequences.

B.2. IAM Online

The IAM On-Line Handwriting Database (IAM-OnDB; Li-
wicki & Bunke 2005)6 was used for the handwriting exper-
iments in the IAM Online task. The IAM-OnDB dataset
splits into one training, two validation sets and one test set,
having 775, 192, 216 and 544 boards each. Each board, see
6(a), contains multiple hand-written lines. Each line splits
into strokes represented by sequences of 3-dimensional
vectors of x, y (a pen position) and t (time) coordinates.
Begins and ends of the characters within each stroke are
not explicitely marked. The stroke data were joint together
and a fourth dimension that contains value of 1 at the time
of the pen lifting (a transition to the next stroke) and zeroes
at all other time steps. Each handwriting line is accompa-
nied with a target character sequence, see 6(b) assembled
from the following 81 ASCII characters:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 !"#&\’()*+,-./[]:;?

The board labeled as a08-551z (in the training set) con-
tains a sequence of 11 percent (%) characters that does not
have an image in the strokes and the percent character does
not occur in any other board. The board was removed from
the experiments.

6The IAM-OnDB was obtained from http://www.
iam.unibe.ch/fki/databases/iam-on-line-
handwriting-database

http://www.iam.unibe.ch/fki/databases/iam-on-line-handwriting-database
http://www.iam.unibe.ch/fki/databases/iam-on-line-handwriting-database
http://www.iam.unibe.ch/fki/databases/iam-on-line-handwriting-database

Supplementary Material for LSTM: A Search Space Odyssey

V CIFG FGR NP NOG NIAF NIG NFG NOAF

30

40

50

60

70

80

90

100

cl
as

si
fic

at
io

n
er

ro
r

in
%

TIMIT

V CIFG FGR NP NOG NIAF NIG NFG NOAF

20

40

60

80

100

ch
ar

ac
te

r
er

ro
r

ra
te

IAM Online

V CIFG FGR NP NOG NIAF NIG NFG NOAF

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

ne
ga

ti
ve

lo
g-

lik
el

ih
oo

d

JSB Chorales

0.5

1.0

1.5

2.0

2.5

nu
m

be
r

of
pa

ra
m

et
er

s
∗1

05
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

nu
m

be
r

of
pa

ra
m

et
er

s
∗1

05

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

nu
m

be
r

of
pa

ra
m

et
er

s
∗1

05

Figure 7. Test set performance of for all 200 runs for each dataset and variant. Boxes show the range between the 25th and the 75th

percentile of the data, while the whiskers indicate the whole range. The red dot represents the mean and the red line the median of the
data. The boxes of variants that differ significantly from the vanilla LSTM are shown in blue with thick lines. The grey histogram in the
background presents the average number of parameters for every variant.

The two validation sets were joint together. The training,
validation and testing sets contain 5 355, 2 956 and 3 859
lines. The sequences were subsampled to half the length
(they still contain enough information but it speeds up the
training). Instead of absolute pen positions their differences
were used. The data was standardized. No additional pre-
processing (like base-line straightening, cursive correction
etc.) was used. The CTC-error function by Graves et al.
(2006) was used for labeling the 81 characters and best-
path decoding was used for determining the Character Er-
ror Rate.

B.3. JSB Chorales

JSB Chorales is a collection of 382 four-part harmonized
chorales by J. S. Bach (Allan & Williams, 2005), con-
sisting of 202 chorales in major keys and 180 chorals in
minor keys. We used the preprocessed piano-rolls pro-
vided by Boulanger-Lewandowski et al. (2012) currently
available at http://www-etud.iro.umontreal.
ca/˜boulanni/icml2012. These piano-rolls were
generated by transposing each MIDI sequence in C major
or C minor and sampling frames every quarter note.

C. Additional plots
Here we present some additional plots that didn’t make it
into the paper.

C.1. Full Boxplot for all Variants

In Figure 7 a box-whiskers-plot of the performance over all
200 runs (in contrast to only the top 20 as in the paper) is
shown for every variant.

C.2. Performance and Time Scatterplots

A scatterplot of training time vs performance for all runs
can be seen in Figure 9, 10, and 11. The individual variants
are shown with different markers. We were hoping to iden-
tify some clusters, along the pareto front of that tradeoff.
But no such structure could be found.

C.3. Hyperparameter Interactions

In Figure 8 we visualize the interaction between all pairs
of hyperparamters. It is divided vertically into three sub-
plots, one for every dataset (TIMIT, IAM Online, and JSB
Chorales). The subplots itself are divided horizontally into
two parts, each containing a lower triangular matrix of
heatmaps. The rows and columns of these matrices rep-
resent the different hyperparameters (learning rate, mo-
mentum, hidden size, and input noise) and there is one
heatmap for every combination. The color encodes the
performance as measured by the Classification Error for
TIMIT, Character Error Rate for IAM Online and Nega-
tive Log-Likelihood for the JSB Chorales Dataset. For all
datasets low (blue) is better than high (red).

Each heatmap in the left part shows marginal performance
for different values of the respective two hyperparamers.
This is the average performance predicted by the decision
forest when marginalizing over all other hyperparameters.
So each one is the 2D version of the performance plots from
Figure 4 in the paper.

The right side employs the idea of ANOVA to better illus-
trate the interaction between the hyperparameters. So we
removed the variance of performance that can be explained
by varying a single hyperparameter and only plot what is
left. For the case that two hyperparameters do not interact

http://www-etud.iro.umontreal.ca/~boulanni/icml2012
http://www-etud.iro.umontreal.ca/~boulanni/icml2012

Supplementary Material for LSTM: A Search Space Odyssey

at all (are perfectly independent) that residual would be all
zero (grey).

So look for example at the pair hidden size and learning
rate on the left side for the TIMIT dataset. We can see
that in general performance varies strongly along the x-axis
(learning rate), first decreasing and then increasing again.
This is what we would expect knowing the valley-shape of
the learning rate from Figure 4 in the paper. Along the y-
axis (hidden size) performance seems to decrease slightly
from top to bottom. Again this is roughly what we would
expect.

Now let’s look at the same pair on the right side. This plot
shows how the heatmap on the left differs from the case of
the two hyperparameters being independent. So here a blue
pixel means, that the marginal error for this combination
of learning rate and hidden size is lower (better) than you
would expect. You will notice the scale is much smaller for
the right side (-3 to 3 as opposed to 32 to 60) and still many
of the heatmaps are close to grey.

References
Allan, Moray and Williams, Christopher KI. Harmonising

chorales by probabilistic inference. Advances in neural
information processing systems, 17:25–32, 2005.

Boulanger-Lewandowski, Nicolas, Bengio, Yoshua, and
Vincent, Pascal. Modeling Temporal Dependencies
in High-Dimensional Sequences: Application to Poly-
phonic Music Generation and Transcription. pp. 1159–
1166, 2012. URL http://icml.cc/discuss/
2012/590.html.

Garofolo, JS, Lamel, LF, Fisher, WM, Fiscus, JG, Pal-
lett, DS, and Dahlgren, NL. DARPA TIMIT Acoustic-
Phonetic Continuous Speech Corpus CD-ROM. Na-
tional Institute of Standards and Technology, NTIS Or-
der No PB91-505065, 1993.

Graves, Alex, Fernández, Santiago, Gomez, Faustino, and
Schmidhuber, Jürgen. Connectionist temporal classifi-
cation: labelling unsegmented sequence data with recur-
rent neural networks. In Proceedings of the 23rd inter-
national conference on Machine learning, pp. 369–376,
2006. URL http://dl.acm.org/citation.
cfm?id=1143891.

Halberstadt, Andrew K. Heterogeneous acoustic mea-
surements and multiple classifiers for speech recogni-
tion. PhD thesis, Massachusetts Institute of Technology,
1998.

Liwicki, Marcus and Bunke, Horst. IAM-OnDB-an on-line
English sentence database acquired from handwritten
text on a whiteboard. In Document Analysis and Recog-
nition, 2005. Proceedings. Eighth International Confer-
ence on, pp. 956–961. IEEE, 2005.

Mermelstein, P. Distance measures for speech recognition:
Psychological and instrumental. In Chen, C. H. (ed.),
Pattern Recognition and Artificial Intelligence, pp. 374–
388. Academic Press, New York, 1976.

http://icml.cc/discuss/2012/590.html
http://icml.cc/discuss/2012/590.html
http://dl.acm.org/citation.cfm?id=1143891
http://dl.acm.org/citation.cfm?id=1143891

Supplementary Material for LSTM: A Search Space Odyssey

-2.0

-1.5

-1.0

-0.5

-0.0

m
o
m

e
n
tu

m

TIMIT

1.0

1.2

1.5

1.8

2.0

h
id

d
e
n
 s

iz
e

-5.9 -5.0 -4.0 -3.0 -2.0

learning rate

0.0

0.3

0.5

0.7

1.0

in
p
u
t

n
o
is

e
 s

td

-2.0 -1.5 -1.0 -0.5 -0.0

momentum

1.0 1.2 1.5 1.8 2.0

hidden size

33

36

39

42

45

48

51

54

57
-2.0

-1.5

-1.0

-0.5

-0.0

m
o
m

e
n
tu

m

TIMIT

1.0

1.2

1.5

1.8

2.0

h
id

d
e
n
 s

iz
e

-5.9 -5.0 -4.0 -3.0 -2.0

learning rate

0.0

0.3

0.5

0.7

1.0

in
p
u
t

n
o
is

e
 s

td

-2.0 -1.5 -1.0 -0.5 -0.0

momentum

1.0 1.2 1.5 1.8 2.0

hidden size

2.4

1.6

0.8

0.0

0.8

1.6

2.4

(a)

-2.0

-1.5

-1.0

-0.5

-0.0

m
o
m

e
n
tu

m

IAMOnline

1.0

1.2

1.5

1.7

2.0

h
id

d
e
n
 s

iz
e

-6.0 -5.0 -4.0 -3.0 -2.0

learning rate

0.0

0.3

0.5

0.7

1.0

in
p
u
t

n
o
is

e
 s

td

-2.0 -1.5 -1.0 -0.5 -0.0

momentum

1.0 1.2 1.5 1.7 2.0

hidden size

20

30

40

50

60

70

80

90

-2.0

-1.5

-1.0

-0.5

-0.0

m
o
m

e
n
tu

m

IAMOnline

1.0

1.2

1.5

1.7

2.0

h
id

d
e
n
 s

iz
e

-6.0 -5.0 -4.0 -3.0 -2.0

learning rate

0.0

0.3

0.5

0.7

1.0

in
p
u
t

n
o
is

e
 s

td

-2.0 -1.5 -1.0 -0.5 -0.0

momentum

1.0 1.2 1.5 1.7 2.0

hidden size

24

16

8

0

8

16

24

(b)

-2.0

-1.5

-1.0

-0.5

-0.0

m
o
m

e
n
tu

m

JSB Chorales

1.0

1.2

1.5

1.8

2.0

h
id

d
e
n
 s

iz
e

-6.0 -5.0 -4.0 -3.1 -2.1

learning rate

0.0

0.2

0.5

0.7

1.0

in
p
u
t

n
o
is

e
 s

td

-2.0 -1.5 -1.0 -0.5 -0.0

momentum

1.0 1.2 1.5 1.8 2.0

hidden size

8.8

9.2

9.6

10.0

10.4

10.8

11.2

11.6

12.0 -2.0

-1.5

-1.0

-0.5

-0.0

m
o
m

e
n
tu

m

JSB Chorales

1.0

1.2

1.5

1.8

2.0

h
id

d
e
n
 s

iz
e

-6.0 -5.0 -4.0 -3.1 -2.1

learning rate

0.0

0.2

0.5

0.7

1.0

in
p
u
t

n
o
is

e
 s

td

-2.0 -1.5 -1.0 -0.5 -0.0

momentum

1.0 1.2 1.5 1.8 2.0

hidden size

0.32

0.24

0.16

0.08

0.00

0.08

0.16

0.24

0.32

(c)

Figure 8. Total marginal predicted performance for all pairs of hyperparameters (left) and the variation only due to their interaction
(right).

Supplementary Material for LSTM: A Search Space Odyssey

30 40 50 60 70 80 90 100

Classification Error

104

105

106

ti
m

e

TIMIT V
CIFG
FGR
NFG
NIAF
NIG
NOAF
NOG
NP

Figure 9. Scatterplots for all 1800 experiments of the TIMIT Dataset. We show performance on the x-axis vs training time on the y-axis
(logarithmically). The variants are displayed with different colors or markers

Supplementary Material for LSTM: A Search Space Odyssey

20 40 60 80 100

Character Error Rate

104

105

106

ti
m

e

IAM Online V
CIFG
FGR
NFG
NIAF
NIG
NOAF
NOG
NP

Figure 10. Scatterplots for all 1800 experiments of the IAM Online Dataset. We show performance on the x-axis vs training time on the
y-axis (logarithmically). The variants are displayed with different colors or markers

Supplementary Material for LSTM: A Search Space Odyssey

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5

Negative Log-Likelihood

102

103

104

ti
m

e

JSB Chorales V
CIFG
FGR
NFG
NIAF
NIG
NOAF
NOG
NP

Figure 11. Scatterplots for all 1800 experiments of the JSB Chorales Dataset. We show performance on the x-axis vs training time on
the y-axis (logarithmically). The variants are displayed with different colors or markers

