Al Challenge 4: Adversarial Search

COSC4550/COSCH550
Artificial Intelligence
University of Wyoming

1 Overview

In this project, you will design agents for the classic version of Pac-Man, in-
cluding ghosts. Along the way, you will implement minimax with alpha-beta
pruning and try your hand at evaluation function design.

Figure 1: The full Pacman game.

Acknowledgment: This assignment is based on the one created by Dan Klein
and John DeNero given as part of Berkeley’s CS188 course. This assignment
was also inspired by the modifications made by Peter Stone in his CS343 course
of 2012. We thank Dan and John for creating the assignment and granting
the permission to use it and we thank Peter for the ideas on how to adapt the
assignment for this course.

1.1 Chapters

Chapters are from the book ‘Artificial Intelligence, A Modern Approach’, third
edition, by Stuart Russel and Peter Norvig. The relevant chapter for this chal-
lenge is chapter 5, sections 1, 2, and 3. The most relevant sub-sections are 5.2.1
(The minimax algorithm) and 5.3 (Alpha-Beta Pruning).

1.2 Program files

The archive for this challenge contains a number of Python files. These files
have been tested on, and should work with, Python version 2.7.3 and Python
version 2.6.6. More recent versions of Python 2.x probably work as well, but
these files do not work with Python 3.x.

Once again, the code has not changed much from the previous project, but please
start with a fresh installation, rather than intermingling files from challenge 3.
You can, however, use your search.py in any way you want. The important files
for this challenge are:

multiAgents.py This file should be extended with your implementations
of the adversarial Pacman agents.
pacman.py The main file that runs Pacman games. This file de-
scribes a Pacman GameState type, which you will use
in this project.
game.py The logic behind how the Pacman world works. This
file describes several supporting types like AgentState,
Agent, Direction, and Grid.
util.py Useful data structures for implementing search algo-
rithms.
autograder.py You do not need to examine this file, but it can help you
test your minimaz and alpha-beta algorithms.

You can test whether everything is working by playing a game of classic Pacman
using:

python pacman.py

1.2.1 The autograder

For question 1 and 2 of this challenge we also provide you with an autograder,
which will check the correctness of your algorithm in various scenarios. Note
that the autograder is not perfect and you might still have some bugs in your
code even if you pass all tests. It is also possible, that the autograder will ‘fail’
a correct solution because of a minor implementation difference. If you feel that

the autograder is mistakenly failing a correct solution, please let us know, and
we will try to update the autograder to account for your case. That said, the
autograder has been tested by many students before you, so it is quite likely
that the autograder is working as intended, and that you will have to debug
your solution.

The autograder has various options which might help you to debug your pro-
gram. Useful options include -p which will print the test case before doing
the test and --no-graphics which will not display the Pacman game for faster
grading. To see all options us -h.

Note that the games the autograder shows are controlled by the autograder,
not by your agent, meaning that the autograder games will always be the same,
regardless of the actions you agent chooses. This is done so we can compare the
actions of your agent with the actions known to be optimal. To see your own
agent in action, run the game directly with the pacman.py commands.

1.3 Deliverables

For this challenge you should submit your version of multiAgents.py. Please
rename your file to [yourname] multiAgents.py before handing it in. You are
also allowed to send any number of supporting files (like search.py, etc.) but
please do not change or send any of our original files.

Important: Make absolutely sure that your implementation will run all ques-
tions without any modifications being necessary on our part. It should run on
either python 2.7.3 or python 2.6.6 and, when in doubt, you can always test your
implementation on hive. You will only receive partial credit for implementations
that do not run.

To run your solution on hive, first copy your project to hive (hive.cs.uwyo.edu)
using any protocol accepted by hive (such as scp), then ssh onto hive and run
your solution. Do not forget to use the -q (for pacman.py) or --no-graphics
(for autograder.py) option, as you will not have a display on hive and the pro-
gram will crash without them.

2 Questions

2.1 Question 1 (8 points)

You will write an adversarial search agent in the provided MinimazAgent class
stub in multiAgents.py. Your minimax agent should work with any number
of ghosts, so you’ll have to write an algorithm that is slightly more general
than what appears in the textbook. In particular, your minimax tree will have
multiple min layers (one for each ghost) for every max layer. Note that the way

the game progresses is, in a round robin fashion, where Pacman takes a step,
then ghostl takes a step, then ghost2 takes a step, ..., then Pacman takes a
step, and so on.

Your code should also expand the game tree to an arbitrary depth. Score the
leaves of your minimax tree with the supplied self.evaluationFunction, which de-
faults to scoreFEvaluationFunction. MinimaxAgent extends MultiAgentSearchA-
gent, which gives access to self.depth and self.evaluationFunction. Make sure
your minimax code makes reference to these two variables where appropriate as
these variables are populated in response to command line options. Test your
code on the minimazClassic maze for up to four plies deep.

python pacman.py -p MinimaxAgent -1 minimaxClassic -a depth=1
python pacman.py -p MinimaxAgent -1 minimaxClassic -a depth=2
python pacman.py -p MinimaxAgent -1 minimaxClassic -a depth=3
python pacman.py -p MinimaxAgent -1 minimaxClassic -a depth=4

You can use the autograder on question 1 with the following command:
python autograder.py -q ql

Important: A single search ply is considered to be one Pacman move and all
the ghosts’ responses, so depth 2 search will involve Pac-Man and each ghost
moving two times.

2.1.1 Hints and Observations

e The minimax values of the initial state in the minimazClassic layout are
9, 8, 7, -492 for depths 1, 2, 3 and 4 respectively, according to the default
scoreEvaluationFunction (that is, these are the final scores Pac-Man
expects to receive if the opponents play optimally). Note that, because
the opponents do not play optimally, your minimax agent will often win
(600/1000 games for us) despite the dire prediction of depth 4 minimax.

e To increase the search depth achievable by your agent, remove the Direc-
tions.STOP action from Pacman’s list of possible actions. Depth 2 should
be pretty quick, but depth 3 or 4 will be slow. Don’t worry, the next
question will speed up the search somewhat.

e Pacman is always agent 0, and the agents move in order of increasing
agent index. All states in minimax should be GameStates, either passed
in to getAction or generated via GameState.generateSuccessor.

e On larger boards such as openClassic and mediumClassic (the default),
you’ll find Pacman to be good at not dying, but quite bad at winning.
He’ll often thrash around without making progress. He might even thrash
around right next to a dot without eating it because he doesn’t know
where he’d go after eating that dot. Don’t worry if you see this behavior,
question 3 will clean up most of these issues.

e When Pacman believes that his death is unavoidable, he will try to end
the game as soon as possible because of the constant penalty for living.
Sometimes, this is the wrong thing to do with random ghosts, but minimax
agents always assume the worst.

e The game score, which is the evaluation function for this challenge, works
by adding and subtracting from the current game score (which starts at
zero) in the following way:

—1 for each time-step

+10 for each food item eaten
4200 for eating ghosts

+500 for winning

—500 for losing

2.1.2 Grading: 8 points

You will get full credit if you correctly implement minimax search (use the
autograder to test that it does!). This means that, for every possible state, your
agent should return one of the actions that provides the highest score according
to the minimax algorithm using the default scoreEvaluationFunction. In case of
ties your agent may chose any of the best actions.

2.2 Question 2 (6 points)

Make a new agent that uses alpha-beta pruning to more efficiently explore
the minimax tree, in AlphaBetaAgent. Again, your algorithm will be slightly
more general than the pseudo-code in the textbook, so part of the challenge
is to extend the alpha-beta pruning logic appropriately to multiple minimizer
agents.

You should see a speed-up (perhaps depth 3 alpha-beta will run as fast as depth
2 minimax). Ideally, depth 3 on smallClassic should run in just a few seconds
per move or faster.

python pacman.py -p AlphaBetaAgent -a depth=3 -1 smallClassic

The AlphaBetaAgent minimax values should be identical to the MinimazAgent
minimax values, although the actions it selects can vary because of different
tie-breaking behavior. Again, the minimax values of the initial state in the
minimazClassic layout are 9, 8, 7 and -492 for depths 1, 2, 3 and 4 respectively.
As for the previous question you can use the autograder to check the correctness
of your algorithm:

python autograder.py -q g2

2.2.1 Grading: 6 points

You will get full credit if you correctly implement minimax search with alpha-
beta pruning. This means that, in addition to always returning a ‘best’ action,
your algorithm should explore a minimum number of states according to the
alpha-beta pruning algorithm. Note that, for the purpose of automatic grading,
the states explored are determined by calls to gameState.generateSuccessor, so
you have to make sure that you call this function for exploring states and that
you only call it for states that you actually explore. Use the autograder to check
that you don’t expand unnecessary states.

2.3 Question 3 (6 points)

Write a better evaluation function for pacman in the provided function bet-
terEvaluationFunction. You may use any tools at your disposal for evaluation,
including your search code from the last project. With depth 2 search, your
evaluation function should clear the smallClassic layout with two random ghosts
more than half the time and still run at a reasonable rate.

Because of the variance in the performance on this task we will test your code on
a batch of 50 runs with an initial seed of 1 using the -s 1 option. Note that this
does not fix the seed for each run as your second run will take the state of the
random number generator left by your first run and use it to produce numbers
for the second run. This means that each of the 50 runs will be different and,
more importantly, that if one run goes differently because of a change you made,
all subsequent runs might be different as well. The command we’ll use is listed
below.

python pacman.py -1 smallClassic -p AlphaBetaAgent -a evalFn=better -s 1 -q -n 50

2.3.1 Hints and Observations

e To see which information you have available by default check the GameS-
tate class in pacman.py.

e As noted in question 1, our opponents do not play optimally. While this
might seem like a fundamental problem for minimax search, you can use
the evaluation function to circumvent this problem by giving higher values
to states in which Pac-Man has at least has some chance of survival, or to
states in which Pac-Man survived longer.

e When all states that Pac-Man can ‘see’ with the current search depth
have similar values he will often refuse to move or thrash around in a very
small space. Make sure your evaluation function provides a way to identify
states that at least bring Pac-Man closer to the goal of winning the game,
even when there does not seem to be a direct benefit.

e One way you might want to write your evaluation function is to use a linear
combination of features. That is, compute values for features about the
state that you think are important, and then combine those features by
multiplying them by different values and adding the results together. You
might decide what to multiply each feature by based on how important
you think it is.

e Winning a game will usually give you a score of about 950. To get a
higher score your agent also has to capture some ghosts before finishing
the game.

2.3.2 Grading: 6 points

To get any credit Pacman should be winning more than half the time with
search depth 2 on the smallClassic layout with 2 random ghosts and a set of
50 games may not take more than 30 minutes without graphics (if you are
unsure whether your algorithm will run in the allotted time you can check this
yourself by running it on hive). If you meet these requirements you’ll get points
depending on your average score.

Average score Points COSC 4550 Points COSC 5550
score < 900 3 3

900 < score < 1100 6 5

1100 < score < 1300 +0.5 extra credit 6

1300 < score < 1586 +0.5 extra credit +1 extra credit

1586 < score (current record) +1 extra credit +1 extra credit

2.4 Question 4 (6 points, COSC5550 mandatory, COSC4550
bonus): Ultimate Pacman

(Mandatory for those enrolled in the graduate student version of the class.
Bonus points for undergraduates)

Now it is time for Pacman to show off how good he has become. Pacman will
face off against more intelligent opponents in a trickier maze. In particular,
the ghosts will actively chase Pacman instead of wandering around randomly,
and the maze features more twists and dead-ends, but also extra pellets to give
Pacman a fighting chance. You're free to have Pacman use any search procedure,
search depth, and evaluation function you like. The only limit is that the set of
10 games can last a maximum of 30 minutes in total (with graphics off, you can
check your code on hive), so be sure to use your computation wisely. Because
of the high variance in this maze we will run your code with the fixed seed of 1

for a set of runs. To be more precise we’ll run your program with the following
command:

python pacman.py -1 ultimateClassic -p UltimateAgent -g DirectionalGhost -s 1 -q -n 10

2.4.1 Hints and Observations

e The seed is not reset before each game, meaning your agent will have to
perform well on ten different games!

e Note that you will have to set your evaluation function and depth in your
code as they will not be provided by command line arguments.

e The success of Pacman for this question is determined by score and score
alone. Pacman does not have to win any games as long as his score is
good enough.

2.4.2 Grading: 6 points

To get full credit the full set of 10 games my not last any longer than 30 minutes.
If you meet these requirements you will get credit based upon your average
score.

Average score Points COSC 4550 Points COSC 5550
score < 1100 3

1000 < score < 1200 +0.5 extra credit 5

1200 < score < 1700 +0.5 extra credit 6

1700 < score < 2488 +0.5 extra credit +1 extra credit

2488 < score (current record) +0.5 extra credit +1 extra credit

3 FAQ

Q: What does it mean when a ghost has no legal actions?

A: Tt means that the game has ended.

Q: I am getting the following error when running the autograder: "Attribu-
teError: ‘Multiagent TreeState’ object has no attribute ‘getPacmanPosi-
tion’", what is wrong?

A: The problem is that you call the method getPacmanPosition on a game-
state, but not all autograder game-states have a Pacman position (the
MultiagentTreeState is a search tree for example). As such, avoid calling

o

getPacmanPosition, and use the proper functions like getLegalActions
and generateSuccessor instead.

I am getting the following error when running the autograder: "getScore()
called on non-terminal state or before mazimum depth achieved”, what is
wrong?

: While you can evaluate every state in the Pacman game, you can only

evaluate leaf nodes or nodes at the maximum depth in the autograder. As
such, make sure you do not call the getScore method on anything that
isn’t at maximum depth and that isn’t a leaf node.

How do I create a good evaluation function?

While there are many things that go into a good evaluation function, there
are three things your evaluation function should always do:

— Always provide direction: if no dots are near, make sure you give
some score for moving towards them.

— Smooth gradients towards the end of the game: sitting next to a dot
should never give you more score than collecting it.

— Incentive to finish the game: there should be some penalty for waiting
around.

Also, remember that your minimax algorithm will look ahead. As such,
do not give a high score for collecting the dot, but instead give a high
score for any game in which the dot is no longer there.

