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project presentations start Friday!!!
links to YouTube videos due Thursday night
video grading criteria on course website

5 minute max length strictly enforced!
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Modern Robotics
(COSC 4560 / COSC 5560)



how can we use ideas from biology to
improve the optimization of robots?

how can we use robots to improve the
understanding of optimization in biology?



Morphological change in machines accelerates
the evolution of robust behavior

Josh Bongard'
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Fig. 3. How morphological change affects
the time to discovery of the desired beha-
vior in the quadruped (A and B) and hexa-
pod (C and D) robot. Light gray bars
indicate the number of controllers that
had to be evaluated when no morphologi-
cal change was allowed. Dark gray bars in-
dicate the discovery time when the robots’
body plans did not change during a robot’s
lifetime, but did change over evolutionary
time. Black bars indicate the discovery time
when body plans changed during each
robot’s lifetime, and also over evolutionary
time. The dark gray and black bars in A and
C report the impact of changing the robot'’s
body plans parametrically; the dark gray
and black bars in B and D report the impact
of changing the robot’s body plans topolo-
gically. Asterisks report statistically signifi-
cant differences between no morphological
change and topological, ontogenetic mor-
phological change. Error bars report one unit
of standard error of the mean.
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Fig. 4. How morphological change affects
the robustness of the discovered behaviors.
Bars report results from the same set of trials
described in Fig. 3. The final robot capable of
phototaxis from each independent experi-
ment was reevaluated 100 times in the same
simulated environment in which it evolved,
but now exposed to small random external
perturbations. The reduction in its ability to
reach the light source was computed as
the percent difference between the original
distance it traveled and its new distance tra-
veled during the perturbation.



this paper (and ALife in general) is great because it:

provides an (optimization) efficiency rationale
for a constraint problem in biology

uses a simple toy robotic model to zoom in on one
specific aspect of a very complex biological phenomenon

uses an established theory from psychology (shaping)
to explain the results from this toy model

uses repeated controlled experiments to show the conditions
when this phenomenon does and doesn't hold true



to demonstrate the difficulty/ethics of performing
behavioral experiments on the role of
developmental trajectories in a biological setting...



Journal of Comparative and Phystological Psychology
1963, Vol. 36, No. 5, 872-876

MOVEMENT-PRODUCED STIMULATION IN THE DEVELOPMENT
OF VISUALLY GUIDED BEHAVIOR!

RICHARD HELD® ano ALAN HEIN?®
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Fia. 1. Apparatus for equating motion and consequent visual feedback for an actively moving (A)
and a passively moved (P) S.



despite getting the same visual inputs,
passive subjects did not:
recognize visual cliffs
respond to a blink test
anticipate surfaces

(after having time to explore, some behaviors were regained
but such experiments are still considered inhumane today)



the idea of creating robust morphologies and behaviors
also applies to the ideas we're studied this semester

(e.g. control policy optimization, and updating
beliefs with via Bayesian optimization)



THE INTERNATIONAL WEEKLY JOURNAL OF SCIENGE

Back on its feet

Using an intelligent trial-and-error learning
algorithm this robot adapts to injury in minutes
PAGES 426 £503
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Robots that can adapt like animals
Nature, 2015

which describes damage recovery via Intelligent Trial and Error

: TN = - %
Antoine Cully Jeff Clune Danesh Tarapore Jean- Baptlste Mouret
UPMC/CNRS University of Wyoming UPMC/CNRS UPMC/CNRS/Inria/UL
(France) Teseeraeiee USA seererererese (France) (France)
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we can ask ask questions about the different
types of behavioral strategies that arise,
investigating how embodiment affects behaviors




= target (to reach towards)

Red tissue expands Blue tissue shrinks



Soft materials:




Stiff materials:
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Figure 5: Stiffer robots tend to employ significantly more
shrinking voxels than softer ones (p < 0.002), in the attempt
to actively control the shape.
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