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data pipelines
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collecting and preprocessing data is as (if not more)
important to getting good results in practical applications
than knowing the underlying machine learning theory



cleaning data




the data that you collect could be messy/poor
for a number of reasons, including
missing or invalid attribute values due to
data entry (or availability) problems

you can quickly search for:

blank attribute fields
nonsensical min/max values (or cardinality)
features with unusually high variance
features with zero or low variance
outliers



there are multiple options for how to treat bad data points:

just ignore that data point
(simplest and adds least errors,
but could be a problem if you're dataset is small)

add a new class for “unknown” values
(simple, but uninformative)



try to estimate the missing attribute
from other features of that data point:

assume the most common value of that attribute
in your dataset (overall mode)

assume the most common value of that attribute
dependent on some other attribute (subclass mode)

find the closest valid datapoint according to the other
attributes and match the missing entries (KNN)



try to estimate the missing attribute
from other features of that data point:

use the mean value of that attribute in your dataset
(or subset)

train a regression or classification model on the relationship
between the missing data and other attributes
(most informed method,
but still doesn't add a lot of new information)



normalizing data



ML methods that use computations in the feature space
(KNN, K-means, neural networks, SVM, ... )
are sensitive to the mean and variance of attributes

apply z-score transformation (on each attribute separately)
to normalize by mean and standard deviation:
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min-max scaling can also be used to map the values
of an attribute to the range [0,1]
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ML methods that use computations in the feature space
(KNN, K-means, neural networks, SVM, ... )
are sensitive to the mean and variance of attributes















feature selection



calculate correlations between features
to remove redundant attributes

subject to some threshold (e.g. r > 0.75)

ordering matter in what features get kept or removed..



or instead of removing features,
add or multiply features together to create higher-order
(e.g. polynomial) features

by combining (or removing) features,
the resulting dataset is of lower-dimension
and quicker/easier to learn



recursive feature elimination based on variable importance

train a model with all variables,
find the variable with the least importance to the model,
remove that variable and retrain with remaining set



how do you measure variable importance?

for some methods, this is explicitly part of the solution
(e.g. parameter coefficients in linear regression)

but you may need to randomly remove/perturb features
and retrain your model to find the effect of that variable
on the quality of your solution (exhaustively,
by a genetic algorithm, or simulated annealing)



Principal Component Analysis (PCA)



Principal Component Analysis (PCA) finds
the basis vector (i.e. direction) that
explain the most variance in the data
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you can think of this similarly to finding the line
that best fits of the data as a combination
of the attributes of the data




PCA then finds the dimension that is orthogonal
to the original basis vector that accounts for
the next most variance




it then transforms the dataset, such that
the data is described by these vectors
(combinations of the original features)




doing so creates new features that are completely
uncorrelated each each other (they're orthogonal!)

and it ranks these new features in order of their
importance in describing the variance of the data

so later features may contribute little or nothing to
the variance of the data (and can be removed —
yay dimensionality reduction!)



original data set output from PCA

10 ol
8 47
L
2_
6 o
y \h 2 0- * ° L—' .
44 .
L
N
2 .
D T T T T 1 _é T T T T T 1
o 2 4 & a2 10 -6 4 2 o 2 4 &
X pcl
PCA is useful for eliminating dimensions. Below, we've If we're going to only see the data along one dimension,
plotted the data along a pair of lines: one composed of the x- though, it might be better to make that dimension the
values and another of the y-values. principal component with most variation. We don't lose
much by dropping PCZ since it contributes the least to the
variation in the data set.
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side note: PCA also requires normalized data

Transformed NON-standardized training dataset after PCA  Transformed standardized training dataset after PCA
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model selection



now we can finally start the machine learning
that we've been talking about this whole time...

choosing our model, training on data, validating on test sets



this seems like a lot of work and tons of choice to make...



let's automate it all!



Tree-based Pipeline Optimization Tool

TPOT
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Pipeline Operators

Preprocessors. We implemented a standard scaling op-
erator that uses the sample mean and variance to scale the
features (StandardScaler), a robust scaling operator that
uses the sample median and inter-quartile range to scale the
features (RobustScaler), and an operator that generates in-
teracting features via polynomial combinations of numerical
features (PolynomialFeatures).



Pipeline Operators

Decomposition. We implemented RandomizedPCA, a

variant of Principal Component Analysis that uses random-
ized Singular Value Decomposition (SVD) [13].



Pipeline Operators

Feature Selection. We implemented a recursive fea-
ture elimination strategy (RFE), a strategy that selects the
top k features (SelectKBest), a strategy that selects the top
n percentile of features (SelectPercentile), and a strategy
that removes features that do not meet a minimum variance

threshold (VarianceThreshold).



Pipeline Operators

Models. In this paper, we focus on supervised learning
models. We implemented both individual and ensemble tree-
based models (DecisionTreeClassifier, RandomForestClassi-
fier, and GradientBoostingClassifier), non-probabilistic and
probabilistic linear models (SVM and LogisticRegression),
and k-nearest neighbors (KNeighborsClassifier).



uses genetic programming (a genetic algorithm for trees)
to build trees that represent data pipelines
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Number of records in data set
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Data source

Import data
from terminal

Structure
your dataset

Dataﬁo bot

- Validate partitioning
- Choose model metric
- Score models

Model Assessment
/ Validation

Collect new data

& retrain the model

Preprocessing

- Feature engineering
- Feature selection
- Feature transformation

- Missing values
- Qutlier handling
- Check variable types

Model / Algorithm

- Algorithm from libraries
- Select model

- Tune hyper parameters
- Guess which algorithms

to run

Deployment

- Implement in the
application

- Recode in another
language in production

- Test
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all of this is very easy to use/code with ML packages

we'll see that next class...
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