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data pipelines



  

collecting and preprocessing data is as (if not more) 
important to getting good results in practical applications 

than knowing the underlying machine learning theory



  

cleaning data



  

the data that you collect could be messy/poor
for a number of reasons, including 

missing or invalid attribute values due to
data entry (or availability) problems

you can quickly search for:

blank attribute fields
nonsensical min/max values (or cardinality)

features with unusually high variance
features with zero or low variance

outliers



  

there are multiple options for how to treat bad data points:

just ignore that data point
(simplest and adds least errors,

but could be a problem if you're dataset is small)

add a new class for “unknown” values
(simple, but uninformative)



  

try to estimate the missing attribute
from other features of that data point:

assume the most common value of that attribute
in your dataset (overall mode)

assume the most common value of that attribute
dependent on some other attribute (subclass mode)

find the closest valid datapoint according to the other 
attributes and match the missing entries (KNN)



  

try to estimate the missing attribute
from other features of that data point:

use the mean value of that attribute in your dataset
(or subset)

train a regression or classification model on the relationship 
between the missing data and other attributes

(most informed method, 
but still doesn't add a lot of new information)



  

normalizing data



  

ML methods that use computations in the feature space
(KNN, K-means, neural networks, SVM, … )

are sensitive to the mean and variance of attributes

apply z-score transformation (on each attribute separately) 
to normalize by mean and standard deviation:



  

min-max scaling can also be used to map the values
of an attribute to the range [0,1]



  

ML methods that use computations in the feature space
(KNN, K-means, neural networks, SVM, … )

are sensitive to the mean and variance of attributes



  



  



  



  



  

feature selection



  

calculate correlations between features
to remove redundant attributes

subject to some threshold (e.g. r > 0.75)

ordering matter in what features get kept or removed.. 



  

or instead of removing features, 
add or multiply features together to create higher-order 

(e.g. polynomial) features

by combining (or removing) features,
the resulting dataset is of lower-dimension

and quicker/easier to learn



  

recursive feature elimination based on variable importance

train a model with all variables,
find the variable with the least importance to the model,

remove that variable and retrain with remaining set



  

how do you measure variable importance?

for some methods, this is explicitly part of the solution
(e.g. parameter coefficients in linear regression)

but you may need to randomly remove/perturb features
and retrain your model to find the effect of that variable

on the quality of your solution (exhaustively, 
by a genetic algorithm, or simulated annealing)



  

Principal Component Analysis (PCA)



  

Principal Component Analysis (PCA) finds
the basis vector (i.e. direction) that

 explain the most variance in the data



  

you can think of this similarly to finding the line 
that best fits of the data as a combination

of the attributes of the data



  

PCA then finds the dimension that is orthogonal
to the original basis vector that accounts for

the next most variance



  

it then transforms the dataset, such that
the data is described by these vectors

(combinations of the original features)



  

doing so creates new features that are completely 
uncorrelated each each other (they're orthogonal!)

and it ranks these new features in order of their 
importance in describing the variance of the data

so later features may contribute little or nothing to 
the variance of the data (and can be removed – 

yay dimensionality reduction!)



  



  



  

side note: PCA also requires normalized data



  

model selection



  

now we can finally start the machine learning
that we've been talking about this whole time… 

choosing our model, training on data, validating on test sets



  

this seems like a lot of work and tons of choice to make…



  

let's automate it all!



  

Tree-based Pipeline Optimization Tool



  



  



  



  



  



  

uses genetic programming (a genetic algorithm for trees)
to build trees that represent data pipelines 



  



  



  



  

all of this is very easy to use/code with ML packages

we'll see that next class… 
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