

Introduction to Artificial Intelligence
COSC 4550 / COSC 5550

Professor Cheney
11/29/17

data pipelines

collecting and preprocessing data is as (if not more)
important to getting good results in practical applications

than knowing the underlying machine learning theory

cleaning data

the data that you collect could be messy/poor
for a number of reasons, including

missing or invalid attribute values due to
data entry (or availability) problems

you can quickly search for:

blank attribute fields
nonsensical min/max values (or cardinality)

features with unusually high variance
features with zero or low variance

outliers

there are multiple options for how to treat bad data points:

just ignore that data point
(simplest and adds least errors,

but could be a problem if you're dataset is small)

add a new class for “unknown” values
(simple, but uninformative)

try to estimate the missing attribute
from other features of that data point:

assume the most common value of that attribute
in your dataset (overall mode)

assume the most common value of that attribute
dependent on some other attribute (subclass mode)

find the closest valid datapoint according to the other
attributes and match the missing entries (KNN)

try to estimate the missing attribute
from other features of that data point:

use the mean value of that attribute in your dataset
(or subset)

train a regression or classification model on the relationship
between the missing data and other attributes

(most informed method,
but still doesn't add a lot of new information)

normalizing data

ML methods that use computations in the feature space
(KNN, K-means, neural networks, SVM, …)

are sensitive to the mean and variance of attributes

apply z-score transformation (on each attribute separately)
to normalize by mean and standard deviation:

min-max scaling can also be used to map the values
of an attribute to the range [0,1]

ML methods that use computations in the feature space
(KNN, K-means, neural networks, SVM, …)

are sensitive to the mean and variance of attributes

feature selection

calculate correlations between features
to remove redundant attributes

subject to some threshold (e.g. r > 0.75)

ordering matter in what features get kept or removed..

or instead of removing features,
add or multiply features together to create higher-order

(e.g. polynomial) features

by combining (or removing) features,
the resulting dataset is of lower-dimension

and quicker/easier to learn

recursive feature elimination based on variable importance

train a model with all variables,
find the variable with the least importance to the model,

remove that variable and retrain with remaining set

how do you measure variable importance?

for some methods, this is explicitly part of the solution
(e.g. parameter coefficients in linear regression)

but you may need to randomly remove/perturb features
and retrain your model to find the effect of that variable

on the quality of your solution (exhaustively,
by a genetic algorithm, or simulated annealing)

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) finds
the basis vector (i.e. direction) that

 explain the most variance in the data

you can think of this similarly to finding the line
that best fits of the data as a combination

of the attributes of the data

PCA then finds the dimension that is orthogonal
to the original basis vector that accounts for

the next most variance

it then transforms the dataset, such that
the data is described by these vectors

(combinations of the original features)

doing so creates new features that are completely
uncorrelated each each other (they're orthogonal!)

and it ranks these new features in order of their
importance in describing the variance of the data

so later features may contribute little or nothing to
the variance of the data (and can be removed –

yay dimensionality reduction!)

side note: PCA also requires normalized data

model selection

now we can finally start the machine learning
that we've been talking about this whole time…

choosing our model, training on data, validating on test sets

this seems like a lot of work and tons of choice to make…

let's automate it all!

Tree-based Pipeline Optimization Tool

uses genetic programming (a genetic algorithm for trees)
to build trees that represent data pipelines

all of this is very easy to use/code with ML packages

we'll see that next class…

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

