ih

Introduction to Artificial Intelligence
COSC 4550 / COSC 5550

Professor Cheney
11/29/17

data pipelines

PRESENT

collecting and preprocessing data is as (if not more)
important to getting good results in practical applications
than knowing the underlying machine learning theory

cleaning data

the data that you collect could be messy/poor
for a number of reasons, including
missing or invalid attribute values due to
data entry (or availability) problems

you can quickly search for:

blank attribute fields
nonsensical min/max values (or cardinality)
features with unusually high variance
features with zero or low variance
outliers

there are multiple options for how to treat bad data points:

just ignore that data point
(simplest and adds least errors,
but could be a problem if you're dataset is small)

add a new class for “unknown” values
(simple, but uninformative)

try to estimate the missing attribute
from other features of that data point:

assume the most common value of that attribute
in your dataset (overall mode)

assume the most common value of that attribute
dependent on some other attribute (subclass mode)

find the closest valid datapoint according to the other
attributes and match the missing entries (KNN)

try to estimate the missing attribute
from other features of that data point:

use the mean value of that attribute in your dataset
(or subset)

train a regression or classification model on the relationship
between the missing data and other attributes
(most informed method,
but still doesn't add a lot of new information)

normalizing data

ML methods that use computations in the feature space
(KNN, K-means, neural networks, SVM, ...)
are sensitive to the mean and variance of attributes

apply z-score transformation (on each attribute separately)
to normalize by mean and standard deviation:

T — W
O

7z —

min-max scaling can also be used to map the values
of an attribute to the range [0,1]

& — Xmin

X maxr ~ min

X norm —

ML methods that use computations in the feature space
(KNN, K-means, neural networks, SVM, ...)
are sensitive to the mean and variance of attributes

feature selection

calculate correlations between features
to remove redundant attributes

subject to some threshold (e.g. r > 0.75)

ordering matter in what features get kept or removed..

or instead of removing features,
add or multiply features together to create higher-order
(e.g. polynomial) features

by combining (or removing) features,
the resulting dataset is of lower-dimension
and quicker/easier to learn

recursive feature elimination based on variable importance

train a model with all variables,
find the variable with the least importance to the model,
remove that variable and retrain with remaining set

how do you measure variable importance?

for some methods, this is explicitly part of the solution
(e.g. parameter coefficients in linear regression)

but you may need to randomly remove/perturb features
and retrain your model to find the effect of that variable
on the quality of your solution (exhaustively,
by a genetic algorithm, or simulated annealing)

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) finds
the basis vector (i.e. direction) that
explain the most variance in the data

ST

© ‘{
o

you can think of this similarly to finding the line
that best fits of the data as a combination
of the attributes of the data

PCA then finds the dimension that is orthogonal
to the original basis vector that accounts for
the next most variance

it then transforms the dataset, such that
the data is described by these vectors
(combinations of the original features)

doing so creates new features that are completely
uncorrelated each each other (they're orthogonal!)

and it ranks these new features in order of their
importance in describing the variance of the data

so later features may contribute little or nothing to
the variance of the data (and can be removed —
yay dimensionality reduction!)

original data set output from PCA

10 ol
8 47
L
2_
6 o
y \h 2 0- * ° L—' .
44 .
L
N
2 .
D T T T T 1 _é T T T T T 1
o 2 4 & a2 10 -6 4 2 o 2 4 &
X pcl
PCA is useful for eliminating dimensions. Below, we've If we're going to only see the data along one dimension,
plotted the data along a pair of lines: one composed of the x- though, it might be better to make that dimension the
values and another of the y-values. principal component with most variation. We don't lose
much by dropping PCZ since it contributes the least to the
variation in the data set.
| ——— *—& # | - T *—% - & 1
] 2 4 & b 10 PC B -6 -4 -2 0 2 4 &
2 T T/ S S S S T T S S

10

o

10

o

10

]
=19

10

-10

10

5

-10

10

-10

-10

-10

10

=]

10

=]

10

pcl

10

-10

10

-10
-10

side note: PCA also requires normalized data

Transformed NON-standardized training dataset after PCA Transformed standardized training dataset after PCA

&0 | .:. ssa class 1(] al ass class 1|]
[]
= sem class 2 o |mem class 2
[|
= s®a Class 3 = " s®s (lass 3
gl -"-'I-U' -1 i 2— 0 Edjl:l -
§_ = = §_ IE|-’_-T-'I:I‘:B:' g = Eg
E E m f [~ ':ED u
g e g e "4
R B et S s S I S s st S PP o I B
{5 . P . (s oo WY YV
= B s, & : & = - & . LA
= £ d s st 5 ® o sl g
- ok ':'Ebnn:l SR BF ha o W - = -2} s ot PR i -
= m s £ ® Y a . = a A 4
i B e " i s " s
G%DE'E':' A o
—20F = & i -} - i
1 | | 1 | 1 | 1 1 | 1 | 1
600 400 =200 O 200 400 &00 B00 1000 1200 - -4 -2 0 2 4 B

1st principal component 1st principal component

model selection

now we can finally start the machine learning
that we've been talking about this whole time...

choosing our model, training on data, validating on test sets

this seems like a lot of work and tons of choice to make...

let's automate it all!

Tree-based Pipeline Optimization Tool

TPOT

01 10VQ17 o
20101 ,p%
01929404°

Raw Data

_v____/

Data Cleaning

Feature
Selection

Feature
Preprocessing

Feature
Construction

Automated by TPOT

Model
Selection

Parameter
Optimization

Model
Validation

Pipeline Operators

Preprocessors. We implemented a standard scaling op-
erator that uses the sample mean and variance to scale the
features (StandardScaler), a robust scaling operator that
uses the sample median and inter-quartile range to scale the
features (RobustScaler), and an operator that generates in-
teracting features via polynomial combinations of numerical
features (PolynomialFeatures).

Pipeline Operators

Decomposition. We implemented RandomizedPCA, a

variant of Principal Component Analysis that uses random-
ized Singular Value Decomposition (SVD) [13].

Pipeline Operators

Feature Selection. We implemented a recursive fea-
ture elimination strategy (RFE), a strategy that selects the
top k features (SelectKBest), a strategy that selects the top
n percentile of features (SelectPercentile), and a strategy
that removes features that do not meet a minimum variance

threshold (VarianceThreshold).

Pipeline Operators

Models. In this paper, we focus on supervised learning
models. We implemented both individual and ensemble tree-
based models (DecisionTreeClassifier, RandomForestClassi-
fier, and GradientBoostingClassifier), non-probabilistic and
probabilistic linear models (SVM and LogisticRegression),
and k-nearest neighbors (KNeighborsClassifier).

uses genetic programming (a genetic algorithm for trees)
to build trees that represent data pipelines

s
he

Polynomial
Features

Entire Data Set | >

w
’ Recursive Random
Combine
Eaat s Feature Forest
Elimination Classifier
T Ty
. A

Entire Data Set |

v

Number of records in data set

100% 200 400 800 1600

80%

70%

60%

50%

40%

[1 Random Forest [—1 TPOT (random search) B TPOT I TPOT (Pareto)

S

Data source

Import data
from terminal

Structure
your dataset

Dataﬁo bot

- Validate partitioning
- Choose model metric
- Score models

Model Assessment
/ Validation

Collect new data

& retrain the model

Preprocessing

- Feature engineering
- Feature selection
- Feature transformation

- Missing values
- Qutlier handling
- Check variable types

Model / Algorithm

- Algorithm from libraries
- Select model

- Tune hyper parameters
- Guess which algorithms

to run

Deployment

- Implement in the
application

- Recode in another
language in production

- Test

@ DanDoe
(V]

o o~
-0~ \0’0\0/

Var Type

Numenc

Categorical

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

bl s s

Unique

102

1,763

9,715

1,763

9,653

6,979

1,752

4,522

2 NO&

Missing

Mean
U.us

1.86

97,077

5,799

20,521

54,176

1,563

5179

14977

SD
u.2)

2.02

232,463

15,585

56,943

119,252

1,879

8818

29892

~ Processing (12)
WM(GL_

@ 16.00% sample cv #1

S N

W Workers: g1y *

2%
1.2GB

2%

l 1568

Elastic-Net Classifier (L2 ...

Elastic-Net Classifier (mix...
) 16.00% sample,CV #1

@& 16.00% sample,CV #1

x

20cPys RAM

® 16.00% sample , Cv #1

02cPus PAM

® 16.00% sample . CV #)

X

2%

1 1.1GB

03cPus NAM
x

3%

J 22068

07cPus DNAM
X

2%

‘ 1168
o7cPUs TAM

all of this is very easy to use/code with ML packages

we'll see that next class...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

