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unsupervised learning continued...
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orange — apple






summer Yosemite — winter Yosemite






This flower has small, round violet

X This flower has small, round violet
petals with a dark purple center T = G(Z, <p(t))

petals with a dark purple center

.......
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this small bird has a pink this magnificent fellow is
breast and crown, and black almost all black with a red
primaries and secondaries. crest, and white cheek patch.

the flower has petals that this white and yellow flower
are bright pinkish purple have thin white petals and a
with white stigma round yellow stamen
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learning word embeddings with word2vec
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we want to learn to associate nearby words

Source Text

-quick brown [fox Jjumps

The brown [fox | jumps

The | quick - fox|jumps

over

over

over

The|quick|brown - Jjumps

over

the

the

the

the

lazy dog.

lazy dog.

lazy dog.

lazy dog.

Training
Samples

(the, quick)
(the, brown)

(quick, the)
(quick, brown)
(quick, fox)

(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)



we can predict context around a given word
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or predict the word, given it's surrounding context
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if we plot the latent representation vectors
in a lower dimensional space...
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where : means “isto” and

amusing
word2vec
analogies

means “as”; e.g. “Rome is to Italy as Beijing is to China” = Rome:Italy::Beijing:China

king:queen: :man:[woman, Attempted abduction, teenager, girl]
//Weird, but you can kind of see it

China:Taiwan: :Russia: [Ukraine, Moscow, Moldova, Armenia]
//Two large countries and their small, estranged neighbors

house:roof::castle:[dome, bell_tower, spire, crenellations, turrets]
knee:leg::elbow:[forearm, arm, ulna_bone]

New York Times:Sulzberger::Fox:[Murdoch, Chernin, Bancroft, Ailes]
//The Sulzberger-ochs family owns and runs the NYT.

//The Murdoch family owns News Corp., which owns Fox News.

//Peter Chernin was News Corp.'s C0O0 for 13 yrs.

//Roger Ailes is president of Fox News.

//The Bancroft family sold the wall St. Journal to News Corp.

love:indifference::fear:[apathy, callousness, timidity, helplessness, inaction]
//the poetry of this single array is simply amazing...

Donald Trump:Republican::Barack Obama:[Democratic, GOP, Democrats, McCain]
//It's interesting to note that, just as Obama and McCain were rivals,
//so too, Word2vec thinks Trump has a rivalry with the idea Republican.

monkey:human: :dinosaur:[fossil, fossilized, Ice_Age_mammals, fossilization]
//Humans are fossilized monkeys? Humans are what's left

//over from monkeys? Humans are the species that beat monkeys

//just as Ice Age mammals beat dinosaurs? Plausible.

building:architect::software:[programmer, SecurityCenter, WinPcap]



Amusing Word2Vec Results

Geopolitics: Irag - Violence = Jordan

Distinction: Human - Animal = Ethics

President - Power = Prime Minister
Library - Books = Hall
Analogy: Stock Market= Thermometer



associative unsupervised learning






Hebbian learning

Presynaptic : Postsynaptic
neurons : neuron (linear)

firing rates v1, vo

linear gain
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auto-associative learning
(Hopfield network)



auto-associative learning
(Hopfield network)

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9




iHopfieId Network

= Recurrent network =

= Feedback from output to
input
N

= Fully connected

= Every neuron connected to
every other neuron



iHOpﬂeId Network

= Recurrent network

= Feedback from output to
input

= Fully connected

= Every neuron connected to
every other neuron



iHOpﬂeId Network

= Recurrent network

= Feedback from output to
input

= Fully connected

= Every neuron connected to
every other neuron




*Hopﬂeld Network

= Recurrent network

= Feedback from output to
input

= Fully connected

= Every neuron connected to
every other neuron




Start Running Train Network
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unsupervised clustering



simple, but widely helpful

there are lots of types of clustering algorithms
(e.g. hierarchical clustering, self organizing maps)
but the one we will introduce here is
K-means clustering, because it is the simplest
(and it's surprisingly effective in practice)



Step 1:
choose a number of classes (k),
and randomly assign all points to one of the classes



Step 2:
average the position of all of the points in a given class
to find that class' centroid (mean features representation)



Step 3:
re-assign each point to the closest centroid



Step ...
repeat centroid and point assignment



Step ...
repeat centroid and point assignment
until a steady state is reached (no assignments change)




you now have the optimal greedy point
assignments for that number of clusters

but you did have to choose the number of
clusters, which may not be obvious



Speeding Feature

how many clusters are here?
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Speeding Feature
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Speeding Feature
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Ce

Within-Cluster Distance to

k-means is cheap and fast, so let's try

a range of val

ues, and look for a good

trade-offs
and n

hetween classification
umber of classes

Elbow Point Example

elbow point, K=4

Number of Clusters K



since we are doing arithmetic in the feature space,
having good features and preprocessing your data
is extremely important to your outcomes

(just like it was in KNN)

but we'll cover this after break...
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