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Stability Issues with Deep RL

Naive Q-learning oscillates or diverges with neural nets

1. Data is sequential
» Successive samples are correlated, non-iid
2. Policy changes rapidly with slight changes to Q-values

» Policy may oscillate
» Distribution of data can swing from one extreme to another

3. Scale of rewards and Q-values is unknown

» Naive Q-learning gradients can be large
unstable when backpropagated



Deep Q-Networks

DQN provides a stable solution to deep value-based RL

1. Use experience replay

» Break correlations in data, bring us back to iid setting
» Learn from all past policies

2. Freeze target Q-network

» Avoid oscillations
» Break correlations between Q-network and target

3. Clip rewards or normalize network adaptively to sensible range
» Robust gradients



Reinforcement Learning in Atari
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DQN Results in Atari



How much does DQN help?

DQN
Q-learning | Q-learning | Q-learning | Q-learning
+ Replay + Replay
+ Target Q + Target Q
Breakout 3 10 241 317
Enduro 29 142 831 1006
River Raid 1453 2868 4103 7447
Seaquest 276 1003 823 2894
Space Invaders 302 373 826 1089




learning policy networks



Deterministic Policy Gradient for Continuous Actions

» Represent deterministic policy by deep network a = 7(s, u)
with weights u

» Define objective function as total discounted reward
JWy=E[n+yn++°r+..]

» Optimise objective end-to-end by SGD

0J(u) E 0Q™ (s, a) In(s, u)
ou Da Ou

» Update policy in the direction that most improves @
» i.e. Backpropagate critic through actor



Deterministic Actor-Critic

Use two networks: an actor and a critic

» Critic estimates value of current policy by Q-learning

agng) _E Kr 1Ol R — G, 2. W)) 50(2*:’ W)]

» Actor updates policy in direction that improves @

0J() _ o [80(5, a, w) O (s, u)]

du Ha du



Deterministic Deep Actor-Critic

» Naive actor-critic oscillates or diverges with neural nets

» DDAC provides a stable solution

1. Use experience replay for both actor and critic
2. Use target Q-network to avoid oscillations
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DDAC for Continuous Control
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End-to-end learning of control policy from raw pixels s
Input state s is stack of raw pixels from last 4 frames
Two separate convnets are used for Q and 7

Physics are simulated in MuJoCo
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[Lillicrap et al.]

Fully-cennected layer
Convolutional layer of rectified linear units

of rectified linear units



def H'S







Emergence of Locomotion Behaviours
In Rich Environments




Model-Based RL

L earn a transition model of the environment

p(r,s’ | s,a)

Plan using the transition model

» e.g. Lookahead using transition model to find optimal actions

right left




Deep Models

» Represent transition model p(r,s’ | s,a) by deep network
» Define objective function measuring goodness of model
» e.g. number of bits to reconstruct next state (Gregor et al.)

» Optimise objective by SGD



Challenges of Model-Based RL

Compounding errors
» Errors in the transition model compound over the trajectory
» By the end of a long trajectory, rewards can be totally wrong
» Model-based RL has failed (so far) in Atari

Deep networks of value/policy can “plan” implicitly
» Each layer of network performs arbitrary computational step
» n-layer network can “lookahead” n steps

» Are transition models required at all?



Deep Learning in Go

Monte-Carlo search

» Monte-Carlo search (MCTS) simulates future trajectories

» Builds large lookahead search tree with millions of positions

» State-of-the-art 19 x 19 Go programs use MCTS

» e.g. First strong Go program MoGo

(Gelly et al.)

Convolutional Networks

» 12-layer convnet trained to predict expert moves

» Raw convnet (looking at 1 position, no search at all)

» Equals performance of MoGo with 10° position search tree
(Maddison et al.)

Program Accuracy Program Winning rate
Human 6-dan ~ 52% GnuGo 07%
12-Layer ConvNet 55% MoGo (100k) 46%
8-Layer ConvNet* 44% Pachi (10k) 47%
Prior state-of-the-art | 31-39% Pachi (100k) 11%

*Clarke & Storkey
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ARTICLE

doi:10.1038/nature 16961

Mastering the game of Go with deep
neural networks and tree search
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Figure 5 | How AlphaGo (black, to play) selected its move in an d, Move probabilities directly from the SL policy network, p, (a|s);
informal game against Fan Hui. For each of the following statistics, reported as a percentage (if above 0.1%). e, Percentage frequency with
the location of the maximum value is indicated by an orange circle. which actions were selected from the root during simulations. f, The
a, Evaluation of all successors s’ of the root position s, using the value principal variation (path with maximum visit count) from AlphaGo’s
network vy(s'); estimated winning percentages are shown for the top search tree. The moves are presented in a numbered sequence. AlphaGo
evaluations. b, Action values Q(s, a) for each edge (s, a) in the tree from selected the move indicated by the red circle; Fan Hui responded with the
root position s; averaged over value network evaluations only (A=0). move indicated by the white square; in his post-game commentary he

¢, Action values Q(s, a), averaged over rollout evaluations only (A=1). preferred the move (labelled 1) predicted by AlphaGo.



so you can learn a policy directly from pixels
instead of from state features or a game tree model

what's the big deal...?
my pacman simulator gives me those for free anyways



robotics!












p.s. this is a great example/template
for you final project videos, they:

1) outline why their problem is important/hard
2) show how they collected data

3) say what model they trained

4) gave quantitative results

5) showed qualitative results (action shots!)
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