ih

Introduction to Artificial Intelligence
COSC 4550 / COSC 5550

Professor Cheney
11/13/17

Stability Issues with Deep RL

Naive Q-learning oscillates or diverges with neural nets

1. Data is sequential
» Successive samples are correlated, non-iid
2. Policy changes rapidly with slight changes to Q-values

» Policy may oscillate
» Distribution of data can swing from one extreme to another

3. Scale of rewards and Q-values is unknown

» Naive Q-learning gradients can be large
unstable when backpropagated

Deep Q-Networks

DQN provides a stable solution to deep value-based RL

1. Use experience replay

» Break correlations in data, bring us back to iid setting
» Learn from all past policies

2. Freeze target Q-network

» Avoid oscillations
» Break correlations between Q-network and target

3. Clip rewards or normalize network adaptively to sensible range
» Robust gradients

Reinforcement Learning in Atari

e ' = .
P $ \ .
y -{. A ' & \ ‘\
state 4/ . 5 5] action
W J \ o
Bk > e \ /7
St £ Al T a
¢ ;.‘_. ;-

%000€ %0001 %009 %00S %00¥ %00€ %002 %001 %0

L 1) Ll | | 1 | | |
[

abuanay sewnzsajuopy
a3 sjenuyd
JejiaeID)
ajiqisoly
sSploJalsy
uewoed ‘si
Buimog

jung signeg
Jsenbeag
aimuap

uai|y

Jepiwuy

piey Janiy
i1SieH jueg
apadiuad
puewwo) Jaddoyn
JOAA JO PIEZIM,
auoz ajeg
Xusisy
‘OY'3IH
u2g.0

foxooH a9|
umo(pue dn
Aquaq Buiysi4
oJnpu3

10]id awi]
Aemaal
Jajsepy n4-Buny
weyyueny
Jepry weag
sJjapenu| aoeds
Buog

puog sawer
EIITVEET
ooleBuey
Jauuny peoy
Jnessy

iy

aWweno) siy| aweN
Hoepy uowsQg
Jaydoo
Jaquui Azeip

loweeT Jeaul Jseg

|8AB}-UBWINY MO|aq
aAoqe 10 [9As]-UBWINY J@

juelogoy
Jauung Jejs
noyealg
Buixog
llequid ospip

DQN Results in Atari

How much does DQN help?

DQN
Q-learning | Q-learning | Q-learning | Q-learning
+ Replay + Replay
+ Target Q + Target Q
Breakout 3 10 241 317
Enduro 29 142 831 1006
River Raid 1453 2868 4103 7447
Seaquest 276 1003 823 2894
Space Invaders 302 373 826 1089

learning policy networks

Deterministic Policy Gradient for Continuous Actions

» Represent deterministic policy by deep network a = 7(s, u)
with weights u

» Define objective function as total discounted reward
JWy=E[n+yn++°r+..]

» Optimise objective end-to-end by SGD

0J(u) E 0Q™ (s, a) In(s, u)
ou Da Ou

» Update policy in the direction that most improves @
» i.e. Backpropagate critic through actor

Deterministic Actor-Critic

Use two networks: an actor and a critic

» Critic estimates value of current policy by Q-learning

agng) _E Kr 1Ol R — G, 2. W)) 50(2*:’ W)]

» Actor updates policy in direction that improves @

0J() _ o [80(5, a, w) O (s, u)]

du Ha du

Deterministic Deep Actor-Critic

» Naive actor-critic oscillates or diverges with neural nets

» DDAC provides a stable solution

1. Use experience replay for both actor and critic
2. Use target Q-network to avoid oscillations

o) B | (107 W) - Qs w))

aJ(U) - -aQ(S, > W) aﬂ'(S, U)
90 §.8.75.8'~D _ 0a ou

0Q(s, a, W)}
ow

DDAC for Continuous Control

v v v Vv

32 4x4 filcers

|16 BxB filters

4xB4xB4

[a

256 hidden units

‘-—--"—"‘"—--.__

End-to-end learning of control policy from raw pixels s
Input state s is stack of raw pixels from last 4 frames
Two separate convnets are used for Q and 7

Physics are simulated in MuJoCo

Ofs.a)

[
S

Stack of 4 previous

frames Convolutional layer

of rectified linear units

32 4x4 filcers

16 Bx8 fileers

4xB4x84

=

-—-__"-—""—--.__

Fully-cennected layer
Convolutional layer of rectified linear units

of rectified linear units

Fully-connec ted linear

256 hidden units
output layer

7(s)

-y
L] _'

Stack of 4 previous

frames Convolutional layer

of rectified linear uni

[Lillicrap et al.]

Fully-cennected layer
Convolutional layer of rectified linear units

of rectified linear units

def H'S

Emergence of Locomotion Behaviours
In Rich Environments

Model-Based RL

L earn a transition model of the environment

p(r,s’ | s,a)

Plan using the transition model

» e.g. Lookahead using transition model to find optimal actions

right left

Deep Models

» Represent transition model p(r,s’ | s,a) by deep network
» Define objective function measuring goodness of model
» e.g. number of bits to reconstruct next state (Gregor et al.)

» Optimise objective by SGD

Challenges of Model-Based RL

Compounding errors
» Errors in the transition model compound over the trajectory
» By the end of a long trajectory, rewards can be totally wrong
» Model-based RL has failed (so far) in Atari

Deep networks of value/policy can “plan” implicitly
» Each layer of network performs arbitrary computational step
» n-layer network can “lookahead” n steps

» Are transition models required at all?

Deep Learning in Go

Monte-Carlo search

» Monte-Carlo search (MCTS) simulates future trajectories

» Builds large lookahead search tree with millions of positions

» State-of-the-art 19 x 19 Go programs use MCTS

» e.g. First strong Go program MoGo

(Gelly et al.)

Convolutional Networks

» 12-layer convnet trained to predict expert moves

» Raw convnet (looking at 1 position, no search at all)

» Equals performance of MoGo with 10° position search tree
(Maddison et al.)

Program Accuracy Program Winning rate
Human 6-dan ~ 52% GnuGo 07%
12-Layer ConvNet 55% MoGo (100k) 46%
8-Layer ConvNet* 44% Pachi (10k) 47%
Prior state-of-the-art | 31-39% Pachi (100k) 11%

*Clarke & Storkey

NATURE | VOL 529 | 28 JANUARY 2016

ARTICLE

doi:10.1038/nature 16961

Mastering the game of Go with deep
neural networks and tree search

a Value network b Tree evaluation from value net € Tree evaluation from rollouts
22228 e 5 5
FY Y AP Yy 400 |00

O e O .

L & %

o

— &

|| ,__

d Policy network e Percentage of simulations f Principal variation
i e EEEE | A I T [[
| I e I | | | | I
2 H7-3-3 = S |1 —7——&——[)——“——4%@7—
® L ® ® # e S -
Ho+eoo
| ‘*' o]
P

|
2

,_ I I

i
.o

I\
5

&
O
o 80 Lt H

Ei]
EN
B Y{*{iix H Fote e soniieot Hotel
3&5}‘% _ ‘5&9 ié \ 04 e 3
[o Sl EIE] | EIE] 1LY
Figure 5 | How AlphaGo (black, to play) selected its move in an d, Move probabilities directly from the SL policy network, p, (a|s);
informal game against Fan Hui. For each of the following statistics, reported as a percentage (if above 0.1%). e, Percentage frequency with
the location of the maximum value is indicated by an orange circle. which actions were selected from the root during simulations. f, The
a, Evaluation of all successors s’ of the root position s, using the value principal variation (path with maximum visit count) from AlphaGo’s
network vy(s'); estimated winning percentages are shown for the top search tree. The moves are presented in a numbered sequence. AlphaGo
evaluations. b, Action values Q(s, a) for each edge (s, a) in the tree from selected the move indicated by the red circle; Fan Hui responded with the
root position s; averaged over value network evaluations only (A=0). move indicated by the white square; in his post-game commentary he

¢, Action values Q(s, a), averaged over rollout evaluations only (A=1). preferred the move (labelled 1) predicted by AlphaGo.

so you can learn a policy directly from pixels
instead of from state features or a game tree model

what's the big deal...?
my pacman simulator gives me those for free anyways

robotics!

p.s. this is a great example/template
for you final project videos, they:

1) outline why their problem is important/hard
2) show how they collected data

3) say what model they trained

4) gave quantitative results

5) showed qualitative results (action shots!)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

