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deep learning architectures cont.
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GooglLeNet (Inception)

Two Softmax Classifiers at intermediate layers combat the vanishing gradient while
providing regularization at training time.

0
anfaafaggiy
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Convolution
Pooling

|
...and no fully connected layers needed ! s —



E2E: Classification: VGG e

conv-64

-
-

conv-128
conv-128

conv-256
conv-256
conv-256
conv-256

. . [_maxpool |
e No poolings between some convolutional layers. s

conv-512

e Convolution strides of 1 (no skipping). conv-512

conv-512
conv-512
conv-512
conv-512
conv-512
FC-4096

FC-4096
__FC-1000

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image
recognition." International Conference on Learning Representations (2015). [video] [slides] [project]




VGG (2014)

T2 w2243 224 x 224 =64

112 x 128

w 0 = 2006
IR IR H12 TXTxH12

ﬂ convolution4RKelLT

Il'-';-['| max pooling

— fully connected+HelL U

j softmax




E2E: Classification: VGG: 3x3 Stacks

Why 3x3 layers?
* Stacked conv. layers have a large receptive field

* two 3x3 layers — 5x5 receptive field 5
* three 3x3 layers — 7x7 receptive field

* More non-linearity

HERER

* Less parameters to learn
* ~140M per net EEEEE

D 1%t 3x3 conv. layer
D 2" 3x3 conv. layer

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image
recognition." International Conference on Learning Representations (2015). [video] [slides] [project]




E2E: Classification: VGG

Top-5 Classification Error (Test Set)

12
D |
10

¥ single net

® multiple nets

N 00 O

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for |large-scale image recognition."
International Conference on Learning Representations (2015). [video] [slides] [project]




ImageNet Challenge: 2015

image 1 WAS WINNING
conv-64 I“AEE"H
]

conv-64

!

-
-

conv-128
conv-128

conv-256
conv-256
conv-256
conv-256

conv-512
conv-512
conv-512
conv-512

conv-512
conv-512
conv-512
conv-512

FC-4096 “"‘"l n

FC-4096

FC-1000 DEEPER MODEL
softmax CAME ALONG

34-layer residual

Microsoft

Research

3.6% top 5 error...
with 152 layers !!



E2E: Classification: ResNet

Revolution of Depth 282
‘ 152 layers '

\
\
\
} 22 layers ’ ‘ 19 Iayers |
\ 6.7 I

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep Residual Learning for Image Recognition." arXiv preprint arXiv:1512.03385
(2015). [slides]




ResNet

e Residual learning: reformulate the layers as learning residual functions with
reference to the layer inputs, instead of learning unreferenced functions

X
weight layer
F(x) l relu "
weight layer identity
F(x) +x

He, Kaiming, Xiangyu Zhang, Shaoging Ren, and Jian Sun. "Deep Residual Learning for Image Recognition." arXiv preprint arXiv:1512.03385
(2015). [slides]




output

i Prediction

+,- ReLU

Representation subtract

input

Published as a conference paper at ICLR 2017

DEEP PREDICTIVE CODING NETWORKS FOR VIDEO
PREDICTION AND UNSUPERVISED LEARNING

William Lotter, Gabriel Kreiman & David Cox
Harvard University

Cambridge, MA 02215, USA
{lotter,davidcox}@fas.harvard.edu
gabriel.kreimanf@tch.harvard.edu



E2E: Classification: ResNet
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30 _____________________________________
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" ===plain-34 . ==ResNet-34 34-layer
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He, Kaiming, Xiangyu Zhang, Shaoging Ren, and Jian Sun. "Deep Residual Learning for Image Recognition." arXiv preprint arXiv:1512.03385
(2015). [slides]



Learn more

Li Fel-Fei, "How we're teaching computers to understand
pictures” TEDTalks 2014.

IDEASWORTHSPREADING

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Fei-Fei, L. (2015). Imagenet large scale visual
recognition challenge. arXiv preprint arXiv:1409.0575. [web]




most network architecture are designed by hand

but there are efforts to optimize the topologies as well...



Evolving Deep Neural Networks

Risto Miikkulainen'?, Jason Liang"?, Elliot Meyerson'2, Aditya Rawal®?, Dan Fink!, Olivier
Francon!, Bala Raju!, Hormoz Shahrzad!, Arshak Navruzyan!, Nigel Duffy!, Babak Hodjat!

ISentient Technologies, Inc.
2The University of Texas at Austin




Evolving Neural Networks through Augmenting Topologies

Kenneth O. Stanley and Risto Miikkulainen
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712 USA
{kstanley, risto } @cs.utexas.edu

Genome (Genotype) 13 5] 6 1|3 5] 6] 7
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Mutate Add Connection

Connect. | IN 1 In 2 In 2 In 3 In 4 In 5
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Weight 0.7 [Weight-0.5 [Weight 0.5 |wWeight 0.2 |wWeight 0.4 | Weight 0.6 4
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Node Hyperparameter Range
Number of Filters [32, 256]
Dropout Rate [0,0.7]
Initial Weight Scaling [0, 2.0]
Kernel Size 41.3%
Max Pooling {True, False}
Global Hyperparameter Range
Learning Rate [0.0001,0.1]
Momentum [0.68, 0.99]
Hue Shift [0, 45]
Saturation/Value Shift [0,0.5]
Saturation/Value Scale [0,0.5]
Cropped Image Size [26,32]
Spatial Scaling [0,0.3]

Random Horizontal Flips
Variance Normalization

Nesterov Accelerated Gradient

{True, False}
{True, False}
{True, False}



moral of the story, the deeper the better...

so why haven't neural networks always been deep?

it's not easy... turns out deep neural network
have problems that shallow ones don't



recent tips and tricks for going deep!



with so many parameters,
deep neural networks have the potential
to overtit to the training data



dropout (2014)
only use a random subset of weights
for each forward/backwards pass

(b) After applying dropout.
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helps prevent overfitting, with relatively little determent to
learning or performance (given a big enough network)

2ffl B =
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= :
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_S : : S o d : : !
£ ~ With dropout
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0 200000 400000 600000 800000 1000000
Number of weight updates

Figure 4: Test error for different architectures
with and without dropout. The net-

Dropout: A Simple Way to Prevent Neural Networks from works have 2 to 4 hidden layers eaCh

Overfitting with 1024 to 2048 units.
Nitish Srivastava NITISHQCS. TORONTO.EDU
Geoffrey Hinton HINTON@CS.TORONTO.EDU
Alex Krizhevsky KRIZQCS. TORONTO.EDU
Ilya Sutskever ILYAQCS.TORONTO.EDU
Ruslan Salakhutdinov RSALAKHU@CS.TORONTO.EDU

Department of Computer Science
University of Toronto

10 Kings College Road, Rm 3302
Toronto, Ontario, M5S 3G4, Canada.

Editor: Yoshua Bengio



helps prevent overfitting, with relatively little determent to
learning or performance (given a big enough network)
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—+— conv_1

Top-5 Classification Performance

~f= conv_2
—— conv_3
0.2 —— conv_4
conv_5
dense_1
dense 2
dense_3
0.0 :
0.0 0.2 0.4 0.6 0.8 1.0

Proportion of Synapses Knocked Out

On the Robustness of Convolutional Neural Networks
to Internal Architecture and Weight Perturbations

Nicholas Cheney “! Martin Schrimpf“ 23 Gabriel Kreiman 3



with so many layers,
error signals may similarly be continually decreased
by each layer during backpropogation,
leading to vanishings gradients!

this problem is especially bad when activations
are extreme (very high or very low)



tanh(x) activation function, and its derivative
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for activation values at the extremes, derivative is small!
(this is less of a problem when inputs are around 0,
but all are < 1, i.e. shrinking error signal)




to complicate things further... error signals are strongest
near the outputs, but layers must be built up from inputs first

al rep

CCA with fin:

: : : : ' — fc1
fc2
fe3

d : ! : ] fod

: 2 : : : fc6

L I L L I
0 5000 10000 15000 20000 25000 30000
Train step

BOTTOM-UP OR TOP-DOWN? DYNAMICS OF DEEP

REPRESENTATIONS VIA CANONICAL-CORRELATION
ANALYSIS

Maithra Raghu,! Jason Yosinski,?> & Jascha Sohl-dickstein'
1Google 2Uber Al Labs
maithra@google.com, yosinski@uber.com, jaschasd@google.com



batch normalization (2015)

Input: Values of x over a mini-batch: B = {z1. .. };
Parameters to be learned: v, 3
Output: {y; = BN, g(z;)}

1 m
— — T;
1s mZ;

1 m
0 — Y (@i — ps)?
1=1

// mini-batch mean

// mini-batch variance

Ly — HUB

Y; — vZ; + 8 = BN, g(z;)

// normalize

fE\q;(—

// scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift

Christian Szegedy
Google Inc., szegedy@google.com

Sergey loffe
Google Inc., sioffe@google.com

for a mini-batch of
training examples,

normalize (scale
=< and shift) all of the
inputs at each layer

(i.e. so they are
centered around 0)



ResNets (2015) help to overcome this problem too
by calculating the residual (difference)
between activation layers, which tend

to be centered around 0

weight layer
F(x) l relu "
weight layer identity




ReLu activation function (2000... popularized around 2015)

rectified linear unit activation function, and its derivative

3

activations creates
non-linearity, but...

zero gradient for

negative activations -

disallows learning
. o1 o 0.
on inhibitory
activations

constant derivative
_—~  for positive
activations reduces
vanishing gradients
(and activations)




as an aside... why do we even need non-linearities?

with non-linearity: without non-linearity:
12 - f(wl,Z ° 11) 12 - (W1,2 ° 11)
13 - f(w2,3 ° 12) 13 - (W2,3 ° 12)
13 - f(‘/\72,3 ° f(wl,Z 7 11)) 3 - (W2,3 ° (W1,2 ° 11))
3 - (W2,3 ’ W1,2) ’ 11
3 - Wall ° 11

*

condenses to the
equivalent of
a single layer!
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