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deep learning!



  

much of our interactions with the world are through vision

thus, it is very important for general artificial intelligence
to be able to make high-level abstract decision about 

visual information (e.g. from camera sensors)

while we focus here on deep learning for spacial abstraction
we will see later how we use similar ideas to make

abstractions along other dimensions (e.g. through time)



  

for these reasons, deep learning for image processing has
been extremely practical and valuable to industry lately

and deep learning researchers/practitioners
have been in high demand



  



  



  



  



  



  

convolutional neural networks



  

each layer in a fully
connected neural network
lets us find more abstract 
features from lower level 

attributes in our data

this was great when we were 
choosing the original attributes 

by hand, but now that we're 
using in very high dimensional 
inputs, it gets quite expensive!



  

e.g. for a (fairly small) camera 
image of 256 x 256 pixels,

for which we want to find 100 
relevant feature at the next layer

256 * 256 = 65,536 input nodes

65,536 * 100 = 6,553,600 
weights/parameters to learn!

and that's just for one layer!



  

if we wanted just 5 layers, and
100 times more training data

than we have parameters to fit

6,553,600 * 5 * 100 = 
3,276,800,000 images

to collect for our dataset



  

luckily for us, it turns out that
fully connected networks are overkill

recall that we were interested in slowly building up
more abstract features over a number of layers

that means that to achieve spatial abstraction,
each layer really only needs to be connected to the

features of the previous layer nearby by it in the image



  



  

imagine a simple 1-D input vector



  

a fully connected neural network would use all the weights
(x

i
) for every attribute in the layer below it to predict

what feature was present at that layer of abstraction (F)



  

in a convolutional neural network, we'll ask what feature
is present at each location, given the previous layer's 

features at that point in space

so the output of each “A” represents a 2-pixel wide feature



  

we've reduced the size of our input from 9 1-pixel features
to 8 (more abstract) 2-pixel-wide features

but more importantly, since we've asked if the same “A” 
feature is present at each localization, we can reuse the same 

“A” filter for each location!  (“weight sharing”)



  

it also means that each of those “A” filters, only needs to 
take 2 inputs, and spit out 1 output – this is cheap!

so cheap that we could even use a whole neural network
to represent a complex mapping in “A” if we wanted to

even a multi-layer network...



  

at the next layer, we could do the same thing again,
learning a different local feature extractor, compressing
the image to represent fewer (but more abstract) features



  

until our final decision is a simple one of few attributes



  

filter's can have arbitrary size, to capture features
with larger spacial dependencies
(e.g. 3-pixel wide features here)



  

and can be applied with any frequency throughout the image
to compress it more at each layer

(e.g. a “stride” of 2, takes 2 steps between filter queries)



  

of course for a 2-D image, the filters will be 2-D



  

but the idea of locally applying repeated filters is the same



  

in fact, compression/abstraction are now happening
in multiple dimensions at once!



  

as a side note, this does not have to be done over pixels

if each x
t
 is an observation in time, then convolution would 

be finding local features/events at each time step
(e.g. did a stock price go up/down compared to yesterday?)



  

how is this “convolution”… and what is that?



  

the pointswise overlap (multiplication) of two signals
(e.g. cross-correlation of how strongly

our filter is expressed in our image)



  

the pointswise overlap (multiplication) of two signals
(e.g. cross-correlation of how strongly

our filter is expressed in our image)



  



  



  



  



  

applying this process with a given filter size (e.g. 3x3)
and a given stride (e.g. 1) produces a

compressed array (next layer activation) of how 
strongly that filter was present in our previous layer



  

often we'll apply many filters (e.g. for RGB channels)
to spit out one output, or many different features



  

“Alexnet” (2012)

192 * 3 * 3 =
1,728 weights

(applied 13 times)

(convolutional 
layer)

2048 * 2048 =
4,194,304 weights
(applied 13 times)

(fully connected 
layer)



  

“Alexnet” (2012)

input an RGB image
(scaled down to
224*224 pixels)

output the
probability that the 
images belongs to 

any of 1000 classes


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

