

Introduction to Artificial Intelligence
COSC 4550 / COSC 5550

Professor Cheney
10/25/17

nonparametric classification

in classification and regression, we've aimed
to find a single model that explains
all the trends underlying our data

when we have to extrapolate and generalize
from our data, the continuity enforced by

having this model is critical

but there may also cases where it would be sufficient
 simply to interpolate in a data-rich problem

in these cases, it can be best to let the data speak for itself,
rather than trying to fit a parameterized model to it

what class is each x?
how do you know?

much easier and cheaper to label just those data points
than to create an entire model for the relationship
between the features! (e.g. sepal width and length)

but assumes that you have good local data
to provide contextual information around

the new point(s) you want to classify

which class is the green dot?

take the class of the labeled data
point that is the closest match to

the features of your new data point
(“nearest neighbor classification”)

“k-nearest neighbors” classification

what if considered the 3 closest points?

“k-nearest neighbors” classification

what if considered the 3 closest points?

how about the 5 closest points?

which one is better?

using more neighbors generalizes more

what if k = 11?

it doesn't matter where our new data point is!
(it is always classified as blue)

it's possible to overgeneralize

nonparametric regression

same idea as k-nearest neighbors (KNN) classification,
but rather voting for the class of a new data point,

use the nearby points only to fit a model
(e.g. linear regression)

k=2 local regression k=3 local mean

k=3 local regression k=10 quadratic kernel

quadratic kernel

w
ei

gh
ti

ng
 o

f
ex

is
ti

ng
 e

xa
m

pl
e

distance from new point

locally-weighted regression

for each query point (x
q
),

w* = argmin
w
 Σ

j
 (Kernel(distance(x

q
, x

j
)) * (y – w◦x

j
)2)

in general, inverse distance weighting (IDW)
is a nice way to use closely related points more strongly

while still considering further data points

This can be combined with a “k” hard threshold on how
far away you consider, but can be used without one too

(very useful in
classification too!)

support vector machines

support vector machines are perhaps the most widely used
machine learning technique

they are simple, yet effective methods for classification

consider two linear separating boundaries

both have perfect classification,
is one any better than the other?

what if we consider points where they would disagree

which new classification makes more sense?

despite perfect classification of the current data points,
this was a poor choice of a boundary because there exist

new potential points that are very similar (i.e. nearby)
to points in one class that would be classified as the other

this means our solution would not generalize well!

instead we want a linear separator that will maximize the
“margin” between the boundary and the closest example

while the linear classification considers all points in
making the decision boundary, to maximize the margins

we only need to consider the two bold points below
(called “support vectors”)

support vector machines (SVMs) incorporate the advantages
of both parametric and non-parametric methods

they do this by fitting a model to the data, but only using a
small number of points local to that decision boundary

y = -1

y = +1

w◦x - b = -1

w◦x - b = +1

w◦x - b = 0

margin width:
 2
|| w ||

minimize ||w|| subject to the constraint that y(w◦x - b) ≥ 1, for all (x, y)
“get as wide a margin as you can while still classifying all the points correctly”

this system can be solved easily and quickly with quadratic programming
(we could use iterative optimization if we wanted, but it would take longer)

we said that SVMs were one of the most widely
used method in machine learning techniques

but everything we've seen to far is built on the
assumption of simple linearly separable classes…

what if it's not separable?what if it's not separable?

for data that is noisy and not perfectly separable,
we can allow data points to enter or cross the margin,

incurring a cost (C or λ) for these events (“soft margin”)

the severity of this cost dictates how much the SVM
will try to avoid allowing points into the margin

(so a large cost will lead to a small margin)

what if it's not a linear relationship?

the solvers for SVMs work very well for linear systems,
but how can we solve a classification problem like this

with a linear separation boundary?

let's project it into an extra dimension,
so now there's a linearly separating plane!

this is called the “kernel trick”

this new function of the existing dimensions
e.g. Ф(x

1
, x

2
), (R2→R3)

f
1
 = x

1

f
2
 = x

2

f
3
 = √(2) x

1
x

2

our quadratic programming
solver only ever sees the dot
product of two data points

f
3
(x

j
) ◦ f

3
(x

k
) = (x

j
◦ x

k
)2

“kernel
function”

when mapped back to the
original feature space,

this linear boundary now
represents a non-linear separator!

there are many kernel functions that
may be helpful features to add...

(almost) every system of N data points
will be linearly separable in N-1 dimensions

and often in many fewer dimensions than that in practice
(especially problems with strong classes/signals)

using domain knowledge to pick kernels can be helpful

or use cross-validation to test a large number of kernels
(careful of overfitting it testing lots of them!)

this “kernel trick” now lets us solve
a non-linear problem with a linear solver

it can also be used on problems that don't require
a linear system (e.g. KNN, logistic classification)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

