ih

Introduction to Artificial Intelligence
COSC 4550 / COSC 5550

Professor Cheney
10/20/17

perceptron as logical opperator

Xl‘ xl‘
1()& 1 @ ®
00 O—=

0 I X

(a) x; and x,

but how do we learn these weights?

sum of products
can be written as
the dot product of
vectors! (w ° X)

the perceptron (and artificial neuron) are the
same as our logistic regression example!

from last class (logistic regression):
y = logistic(w ° Xx)

neural network activation update:
y = sigmoid(w ° x)

(the sigmoid is a type of logistic function)

with neural networks, we can stack predictors on top
of each other in layers (to make them “deep™)!

this allows us to predict which classes of high-level
features might be present based on which lower-level
(less abstract) features we believe to be present

but at each layer in this stack,
we just have a logistic classification problem,
so we can still find its derivative and perform
supervised learning on it (like we've already done)!

A Ll TSN ALY V. Layer 1
L[S AN =0 o>

(<)
RF size (%)

1z

58

4.8

1.4

u13

Latency (ms)

80-100

70-50

60-80

50-70

40-60

Increasing complexity, RF size,
invariance to visual transformations

THENDS in Cognitive Solences

]

' pathway 1 'what' pathway

|
l &
\ .
PO fe—{V3A MT -
v
< -
stream i ventral stream

AT
€
dorsal
‘where

B !

“feedforward” artificial neural network

Hidden

2
[IL[_]IH | _I.l

7N N
|. .: \E}u[]nn
Y r, — o

.-"/f - / — “‘ -
-. d

\ J A PAE
Ml A / f E‘\\\ . i x

/)) | J
ALK / -
| |
N —,

(a) Recurrent neural network (b) Forward neural network

backpropogation

e.g. x=1[0.05,0.10], y = [0.01, 0.99]

o) b2

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example

e.g. x=1[0.05,0.10], y = [0.01, 0.99]

terminology in this example...

We figure out the total net input to each hidden layer neuron, squash the total net input using an
activation function (here we use the logistic function), then repeat the process with the output layer

neurons.

Here’s how we calculate the total net input for A :

netpy = wy * 21 + Wy * ?2 + bl i

netp; = 0.15%x0.05+0.2%0.14+0.35%x1 =0.3775

b1.35 b2 .60

We then squash it using the logistic function to get the output of A;:

outy = L = . = (0.593269992

1_+_E:—n.(thl 1+€_0'3??5

Here’s how we calculate the total net input for A :

netpy = wy * 21 + Wy * ?2 + bl i

netp; = 0.15%x0.05+0.2%0.14+0.35%x1 =0.3775

b1.35 b2 .60

We then squash it using the logistic function to get the output of A;:

outy = L = . = (0.593269992

1_+_E:—n.(thl 1+€_0'3??5

Carrying out the same process for i, we get:
outp, = 0.596884378

We repeat this process for the output layer neurons, using the output from the hidden layer neurons

as inputs.

Here's the output for 0;:
net,; = ws x outyy + wg * outpo + by * 1 " 1

neto; = 0.4 % 0.593269992 + 0.45 % 0.596884378 + 0.6 * 1 = 1.105905967

Outo]_ — s _— 1-{—6_1'110590596? — 075136507

1_1_8—'!1(“.#01

Here's the output for 0;:

net,; = ws x outyy + wg * outpo + by * 1 " 1

neto; = 0.4 % 0.593269992 + 0.45 % 0.596884378 + 0.6 * 1 = 1.105905967

Outo]_ — L — 1-{—6_1'110590596_? — 075136507

1+e—n.rt01

And carrying out the same process for 02 we get:

out,, = 0.772928465

Calculating the Total Error

We can now calculate the error for each output neuron using the squared error function and sum

them to get the total error:

Etotar = Y 2 (target — output)?

The % is included so that exponent is cancelled when we differentiate later on. The result is
eventually multiplied by a learning rate anyway so it doesn’t matter that we introduce a

constant here [1].

b1.35 b2 .60

For example, the target output for 01 is 0.01 but the neural network output 0.75136507, therefore its

error is:

E, = (targety — outy)? =

(0.01 — 0.75136507)? = 0.274811083

1
2

b1.35 b2 .60

For example, the target output for 01 is 0.01 but the neural network output 0.75136507, therefore its

error is:

Ey = $(targety — out,)? = 3(0.01 — 0.75136507)% = 0.274811083
Repeating this process for 02 (remembering that the target is 0.99) we get:
Eos = 0.023560026

The total error for the neural network is the sum of these errors:

Eiotal = Eo1 + B = 0.274811083 + 0.023560026 = 0.298371109

b1.35 b2 .60

The Backwards Pass

Our goal with backpropagation is to update each of the weights in the network so that they cause
the actual output to be closer the target output, thereby minimizing the error for each output neuron
and the network as a whole.

Output Layer

aEtotaI

Consider ws. We want to know how much a change in ws affects the total error, aka =7=«.

By applying the chain rule we know that:

M — 9E}otal % dout] %« onety
Jws dout,1 — Onetyl Owr,

b1.35 b2 .60

By applying the chain rule we know that:

9E+otal — OE¢otal % dout 1 5k dnet o
ows, Jout,1 Onety ows

Visually, here’s what we're doing:

dnet 1 x dout 1 N OFiotal OFEiotal

output
h1

dus, dnet dout,y Ows

wS

output

Em = 4(target 1 - out,)?

Etota =Eo1+Eo2

By applying the chain rule we know that:

3Et0ta,l
ows,

onety
Jws

We need to figure out each piece in this equation.
First, how much does the total error change with respect to the output?
Eiotar = 3(targety — outyr)? + 3(target,n — outy)?

%‘f;—”t:‘l‘ = 2% 3 (target,) — outy)* '+ —1+0

9Eiotal — _(target, — outy) = —(0.01 —0.75136507) = 0.741365

Oout

When we take the partial derivative of the total error with respect to out,;, the quantity

%(targetog — outag)2 becomes zero because out,; does not affect it which means we're

taking the derivative of a constant which is zero.

b1.35 b2 .60

By applying the chain rule we know that:

aEtota,l — aEf.otal
ows dout

dnet 41
ows,

Next, how much does the output of 01 change with respect to its total net input?

The partial derivative of the logistic function is the output multiplied by 1 minus the output:

1

OUlol = Tre=meror

Qoutel — oyt (1 — outy) = 0.75136507(1 — 0.75136507) = 0.186815602

oneto1

 b1.35 b2 .60

By applying the chain rule we know that:

9E4otal — OE+otal K OOUtol_
ows Jout,1 ~ Onety

Finally, how much does the total net input of o1 change with respect to ws?
net,; = Ws * outy) + We * outys + by x 1

Onetol — 1y outpy xwl " + 0+ 0 = outy = 0.593269992

ows

™ b1.35 b2 .60
1

By applying the chain rule we know that:

'\ 9Eiptal " dout o1 " onet 1
Jout,1 ~ Onety Jws

Putting it all together:

OFtotal _ OFtotal dout,q % onet 1
8'1!.-‘5 80uto1 anetol (")1;_15

aEtoml
Jdws

= 0.74136507 % 0.186815602 * 0.593269992 = 0.082167041

You’ll often see this calculation combined in the form of the delta rule:

ag:;;az = —(target,, — out,) * out (1 — out,y) * outy

 b1.35 b2 .60

To decrease the error, we then subtract this value from the current weight (optionally multiplied by
some learning rate, eta, which we’ll set to 0.5):

wi = ws —nx el — (04 — (0.5 % 0.082167041 = 0.35891648

Ows

We can repeat this process to get the new weights Wg, W7, and Ws:
wg = 0.408666186
wi = 0.511301270

wg = 0.561370121

b1.35 b2 .60

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

