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hidden Markov models



  

a Markov process where the state
is a single discrete variable

our example from last class was one of these
(the world was described only by whether it rained or not)



  

having a single state variable allows for convenient
representation of the transition model as a matrix (T) 
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you can similarly represent the change of observing your
evidence variables as a sensor model matrix (O)
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this matrix representation let's us compactly represent
and compute our forward and backward passes
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lots of other convenient (time and space saving) 
tricks you can do with matrix representations 

(some in your book!)



  

like the first-order Markov process trick,
you can get around the single variable constraint

by creating a “megavariable” (tuple of any length)
and having each combination of states be a megastate
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Kalman filters



  

so far we've been iterating over the possible values
 of discrete variables over time with HMMs

but many interesting real world problems are continuous

and partially observable and/or noisy measurements
(and models)

Kalman filters can deal with these types of problems
(so they are used very widely in practice!)



  

let's say we are interested in tracking the movement
over time of something (car, plane, bird, ball, missle, … )

our model to track the movement might incorporate 
information about the object's 3D position and velocity

                                        



  

our (linear) transition model:
X
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let's assume imperfect information 
(noisy measurements/state estimates) 

let's assume Gaussian noise:
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let's also assume a noisy model (also w/ Gaussian noise):
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side note, since we these are continuous variables,
all probability functions are integrals:
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our observation at the next timestep 
provides new information about the 

world, but is also uncertain
(and biased)
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combining the forward prediction    
with our new observation   

give us a more informed estimate   
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the variance of our new estimate is less than
either our predicted state or our measurement

(combining two estimates gives us more certainty!)

this is a property of multiplying Gaussian distribution
(variance often grows when multiplying other distributions)

super cool/important!



  


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

