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instead, let's assume that all the information
necessary to know what state X
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“Markov assumption”

(resulting process is called a
“Markov process” or “Markov chain”)



  

we'll make the Markov assumption about both
observable evidence variables (E) and

non-observable hidden state variables (X)
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estimates
of your 
current 
sensor
values

informed by 
all your past 
sensors and 

past (hidden) 
world states

are no 
better 
than

an
estimate
of your 
current 
sensor
values

informed 
only by the 

(hidden) 
world state 
at the last 
timestep

“sensor Markov assumption”



  

e.g. you're a security guard that works in the basement
you might not be able to observe the weather directly,

but you can make a prediction about it each day based on 
whether or not your boss is holding an umbrella when arrives

evidence variable

hidden variable



  

e.g. you're a security guard that works in the basement
you might not be able to observe the weather directly,

but you can make a prediction about it each day based on 
whether or not your boss is holding an umbrella when arrives

sensor model

transition model



  

note:  even though the world is changing every timestep,
the way in which it changes (the transition model)

is assumed to hold constant throughout learning/use



  

prior transition 
model

sensor 
model
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      ...

for each timestep



  

is the Markov assumption 
reasonable here?

how could we improve it?

(1) look more than one step behind us
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(second order Markov process)
(can also do third order, fourth order, ….)



  

is the Markov assumption 
reasonable here?

how could we improve it?

(2) add more world state variables
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is the Markov assumption 
reasonable here?

how could we improve it?

(2) add more world state variables
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note: option (1) is a subset of (2)
(i.e. your additional variable could contain information

about past states, such that any process can be defined as a
first-order Markov decision process, with enough hidden states)
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~Rain
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~Rain
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we now have our temporal inference model

what fun/useful stuff can we do with it?

filtering
prediction
smoothing

most-likely explanation



  

filtering



  

“belief state estimation”

“filter” down all the observed evidence to
determine what the hidden state variables are

(i.e. filter down to only the features that drive our transitions)
and tell me the current hidden state
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e.g. what is P(R
2
 | u

1,2
)?

P(R
0
) = [0.5, 0.5] (let's assume no prior knowledge/bias)

P(R
1
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 P(R
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0
)

= [0.7, 0.3] * 0.5 + [0.3, 0.7] * 0.5 
= [0.5, 0.5]

(we didn't observe anything,
so we didn't learn anything)

chain rule
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 | R

1
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= α [0.9, 0.2] * [0.5, 0.5]
= α [0.45, 0.1] ≈ [0.818, 0.812]

Bayes' rule!
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= [0.7, 0.3] * 0.818 + [0.3, 0.7] * 0.182 
= [0.627, 0.373]

on day 1, we observe that u
1
= true 

(boss brought his umbrella)

chain rule
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= α [0.9, 0.2] * [0.627, 0.373]
= α [0.565, 0.075] ≈ [0.883, 0.117]

Bayes' rule!
(and Markov 
assumption)

P(R
2
 | u

1
) = [0.627, 0.373]

we've found the current hidden (world) state
from our history of observed states!

(“filtering”)

on day 2, we observe that u
2
= true 

(boss brought his umbrella again)



  

prediction



  

what will the world look like next?
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for k > 0



  

how do you do it?

we already did it!!!
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1
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= α [0.9, 0.2] * [0.5, 0.5]
= α [0.45, 0.1] ≈ [0.818, 0.182]

Bayes' rule!

P(R
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) = [0.5, 0.5] 

P(R
2
 | u

1
) =    ∑

r1
 P(R

2 
| r

1
) * P(r

1 
| u

1
)

= [0.7, 0.3] * 0.818 + [0.3, 0.7] * 0.182 
= [0.627, 0.373]

prediction!

chain rule
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= [0.7, 0.3] * 0.818 + [0.3, 0.7] * 0.182 
= [0.627, 0.373]

prediction!

note how our forward prediction made us less certain
than we were are the previous time step

(i.e. closer to [0.5, 0.5], e.g. [0.818, 0.182] → [0.627, 0.373])

if we predict far enough into the future, our observations
are no longer relevant (and we converge to [0.5, 0.5])



  

smoothing



  

given what we know now (many observations later),
can we go back and update our guess of a past hidden state?

P( X
k
 | e

1:t
 )

for 0 < k < t

for this we need both forward inference,
and backwards inference



  

let's go back and smooth our 
guess of rain on day 1, given that 

we saw an umbrella on day 2
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= α [0.818, 0.182] * (0.9*[0.7, 0.3]+0.2*[0.3, 0.7])
= α [0.564, 0.075] ≈ [0.883, 0.117]

forward backward

(note: prediction improved from when we only had forward pass)
[0.818, 0.182] → [0.883, 0.117]

 “forward-backward algorithm”

filtering =



  

most-likely sequence



  

given a sequence of observation in time,
what's the most likely set of hidden states to cause them?

max
x1, x2, …, xt
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e.g.  given a set of sounds, what the most likely sequence
of words that the user was trying to say?



  

e.g.  given a set of umbrella observations,
what's the most likely weather to have caused it?

similar to filtering (i.e. finding next hidden state) over time
“Viterbi algorithm” (in your book)
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