

Introduction to Artificial Intelligence COSC 4550 / COSC 5550 Professor Nick Cheney 9/20/17

Introduction to Artificial Intelligence COSC 4550 / COSC 5550

Guest lecture by Joost Huizinga

9/20/17

Today: uncertainty and probability

- Goals:
 - Get familiar with probability notation
 - Review probability theory
 - Get everybody on the same page

Ch. 13: Uncertainty

- Uncertainty is pervasive in the world
 - e.g. diagnosing an illness
- Goal: maximize expected utility/value
- Probability Theory is our best tool
 - Lots of help with basic equations & notation in the book

- Very important in Al
- Allow you to have prior knowledge about the world
 - e.g. phones don't have cameras
- update your knowledge of the world
 - e.g. most phones now have cameras

- Priors
 - belief before seeing evidence
 - - e.g. most phones don't have cameras (belief in 2000)
 - aka "unconditional probabilities" or "prior probabilities"
- Posterior
 - aka "conditional probabilities" or "posterior probabilities"

- Prior
 - P(two dice sum to 12) = ??
 - Read: the probability that two dice sum to 12
- Posterior
 - P(two dice sum to 12 | Die1=6) = ??
 - Read: the probability that two dice sum to 12, given that one die landed on a six

Conditional probabilities

Mathematically speaking, conditional probabilities are defined in terms of unconditional probabilities as follows: for any propositions a and b, we have

$$P(a \mid b) = \frac{P(a \land b)}{P(b)}, \qquad \land \text{ means "and"}$$
(13.3)

which holds whenever P(b) > 0. For example,

$$P(doubles \mid Die_1 = 5) = \frac{P(doubles \land Die_1 = 5)}{P(Die_1 = 5)} .$$

The definition of conditional probability, Equation (13.3), can be written in a different form called the **product rule**:

 $P(a \wedge b) = P(a \mid b)P(b) ,$

The product rule is perhaps easier to remember: it comes from the fact that, for a and b to be true, we need b to be true, and we also need a to be true given b.

Notation

- Capital letters indicate the Variable
 - e.g. Weather
- Lowercase letters indicate a value/instance of that variable
 - e.g. Weather = sunny (sometimes abbreviated as just sunny)
 - A = true abbreviated as a
 - A = false as $\sim a$ or $\neg a$

• What does this mean? $P(cavity | \neg toothache \land teen) = 0.1$

More notation

Bolded letter is a vector

 $\mathbf{P}(\mathit{Weather}) = \langle 0.6, 0.1, 0.29, 0.01 \rangle$

 Bolded P over two variables indicates all possible combinations of values over those variables

 $\mathbf{P}(Weather, Cavity)$

- 4 x 2 table if there are 4 possible weather conditions and cavity is a binary random variable
- P(sunny, cavity) means the same as $P(sunny \land cavity)$

Joint Distribution

	toothache		$\neg toothache$	
	$catch$ $\neg catch$		catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576

Figure 13.3 A full joint distribution for the *Toothache*, *Cavity*, *Catch* world.

- Three Boolean random variables
- Values sum to 1
- P(~toothache)?

	toothache		$\neg toothache$	
	catch ¬catch		catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576

Figure 13.3 A full joint distribution for the *Toothache*, *Cavity*, *Catch* world.

• P(~toothache)?

$$\begin{split} P(Y) &= \sum_{z \in \mathbf{Z}} P(Y,z) \;, \end{split}$$

 (called the "unconditional probability" or "marginal probability")

	toothache		$\neg toothache$	
	catch ¬catch		catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576

Figure 13.3 A full joint distribution for the *Toothache*, *Cavity*, *Catch* world.

• P(~toothache)?

$$\begin{split} P(Y) &= \sum_{z \in Z} P(Y,z) \;, \end{split}$$

- (called the "unconditional probability" or "marginal probability")
- $P(\sim toothache) = 0.072 + 0.008 + 0.144 + 0.576 = .8$

	toothache		$\neg toothache$	
	$catch$ $\neg catch$		catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576

Figure 13.3 A full joint distribution for the *Toothache*, *Cavity*, *Catch* world.

$$\begin{split} P(Y) &= \sum_{z \in \mathbf{Z}} P(Y,z) \;, \end{split}$$

P(~toothache ^ catch) ?

	toothache		\neg toothache	
	catch ¬catch		catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576

Figure 13.3 A full joint distribution for the *Toothache*, *Cavity*, *Catch* world.

$$\mathbf{P}(\mathbf{Y}) = \sum_{\mathbf{z}\in\mathbf{Z}} \mathbf{P}(\mathbf{Y},\mathbf{z}) \;,$$

• $P(\sim toothache \land catch) = 0.072 + 0.144 = 0.216$

 $P(a \mid b) = \frac{P(a \land b)}{P(b)}$

(Alone or with your neighbor) $P(cavity \mid toothache) =$

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576
Figure 13.3	gure 13.3 A full joint distribution for the <i>Toothache</i> , <i>Cavity</i> , <i>Catch</i> world.			

 $P(a \mid b) = \frac{P(a \land b)}{P(b)}$

 $P(cavity \mid toothache) = \frac{P(cavity \land toothache)}{P(toothache)}$

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576
Figure 13.3	A full joint distribution for the <i>Toothache</i> , <i>Cavity</i> , <i>Catch</i> world.			

 $P(a \mid b) = \frac{P(a \land b)}{P(b)}$

$$\begin{split} P(cavity \mid toothache) \; = \; & \frac{P(cavity \wedge toothache)}{P(toothache)} \\ = \; & \frac{0.108 + 0.012}{0.108 + 0.012 + 0.016 + 0.064} = 0.6 \; . \end{split}$$

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576
Figure 13.3	A full joint distribution for the <i>Toothache</i> , <i>Cavity</i> , <i>Catch</i> world.			

 $P(a \mid b) = \frac{P(a \land b)}{P(b)} ,$

$$\begin{split} P(cavity \mid toothache) \; = \; & \frac{P(cavity \wedge toothache)}{P(toothache)} \\ = \; & \frac{0.108 + 0.012}{0.108 + 0.012 + 0.016 + 0.064} = 0.6 \; . \end{split}$$

Just to check, we can also compute the probability that there is no cavity, given a toothache:

$$P(\neg cavity \mid toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)} \\ = \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576

Figure 13.3 A full joint distribution for the *Toothache*, *Cavity*, *Catch* world.

 $P(a \mid b) = \frac{P(a \land b)}{P(b)} ,$

 $P(cavity \mid toothache) = \frac{P(cavity \land toothache)}{P(toothache)}$ $= \frac{0.108 + 0.012}{0.108 + 0.012 + 0.016 + 0.064} = 0.6$ Just to check, we can also compute the probability that there is no cavity, given a toothache:

$$P(\neg cavity \mid toothache) = \frac{P(\neg cavity \land toothache)}{P(toothache)} \\ = \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576

Figure 13.3 A full joint distribution for the *Toothache*, *Cavity*, *Catch* world.

 $P(cavity \mid toothache) = \frac{P(cavity \land toothache)}{P(toothache)}$

Why divide by *P(toothache)*?

- In the world where we have a toothache, probabilities still need to sum to 1.
 - $P(cavity \land toothache) = 0.108 + 0.012 = 0.12$
 - $P(\sim cavity \wedge toothache) = 0.016 + 0.064 = 0.08$
- 0.12 and 0.08 are the right relative proportions, but they don't sum to 1.
- Thus, 1/*P(toothache)* functions as a normalization constant

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576
Figure 13.3	A full joint distribut	ion for the Toothach	he, Cavity, Catch w	orld.

 $P(a \mid b) = \frac{P(a \land b)}{P(b)}$

- Such normalization constants will be denoted by α
- Note: you can calculate P(Cavity | toothache) without separately calculating P(toothache)

 $\mathbf{P}(Cavity \mid toothache) = \alpha \mathbf{P}(Cavity, toothache)$

- $= \alpha [\mathbf{P}(Cavity, toothache, catch) + \mathbf{P}(Cavity, toothache, \neg catch)]$
- $= \ \alpha \left[\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle \right] = \alpha \left< 0.12, 0.08 \right> = \left< 0.6, 0.4 \right>.$

$$\mathbf{P}(\mathbf{Y}) = \sum_{\mathbf{z}} \mathbf{P}(\mathbf{Y} \mid \mathbf{z}) P(\mathbf{z}) .$$
(13.8)

This rule is called **conditioning**. Marginalization and conditioning turn out to be useful rules for all kinds of derivations involving probability expressions.

P(cavity), where z = <catch, !catch>?
(Alone or with your neighbor)

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576

Figure 13.3 A full joint distribution for the *Toothache*, *Cavity*, *Catch* world.

	toothache		\neg toothache	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576
Figure 13.3	e 13.3 A full joint distribution for the <i>Toothache</i> , <i>Cavity</i> , <i>Catch</i> world.			

- P(cavity) = P(cavity|catch)*P(catch) + P(cavity|!catch)*P(!catch)
- P(cavity|catch) =

	toothache		\neg toothache	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576
Figure 13.3 A full joint distribution for the <i>Toothache</i> , <i>Cavity</i> , <i>Catch</i> world.				

- P(cavity) = P(cavity|catch)*P(catch) + P(cavity|!catch)*P(!catch)
- P(cavity|catch) = (.108+.072)/(.108+.016+.072+.144) = .53
- P(cavity|!catch) =

	toothache		\neg toothache	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576
Figure 13.3 A full joint distribution for the <i>Toothache</i> , <i>Cavity</i> , <i>Catch</i> world.				

- P(cavity) = P(cavity|catch)*P(catch) + P(cavity|!catch)*P(!catch)
- P(cavity|catch) = (.108+.072)/(.108+.016+.072+.144) = .53
- P(cavity||catch) = (.012+.008)/(.012+.008+.064+.576) = .03
- P(catch) =

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576
Figure 13.3	Figure 13.3 A full joint distribution for the <i>Toothache</i> , <i>Cavity</i> , <i>Catch</i> world.			

- P(cavity) = P(cavity|catch)*P(catch) + P(cavity|!catch)*P(!catch)
- P(cavity|catch) = (.108+.072)/(.108+.016+.072+.144) = .53
- P(cavity||catch) = (.012+.008)/(.012+.008+.064+.576) = .03
- P(catch) = .108 + .016 + .072 + .144 = .34
- P(!catch) =

	toothache		\neg toothache	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576
Figure 13.3 A full joint distribution for the <i>Toothache</i> , <i>Cavity</i> , <i>Catch</i> world.				

- P(cavity) = P(cavity|catch)*P(catch) + P(cavity|!catch)*P(!catch)
- P(cavity|catch) = (.108+.072)/(.108+.016+.072+.144) = .53
- P(cavity|!catch) = (.012+.008)/(.012+.008+.064+.576) = .03
- P(catch) = .108 + .016 + .072 + .144 = .34
- P(!catch) = .012 + .064 + .008 + .576 = .66
- P(cavity) =

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576
Figure 13.3	Figure 13.3 A full joint distribution for the <i>Toothache</i> , <i>Cavity</i> , <i>Catch</i> world.			

- P(cavity) = P(cavity|catch)*P(catch) + P(cavity|!catch)*P(!catch)
- P(cavity|catch) = (.108+.072)/(.108+.016+.072+.144) = .53
- P(cavity|!catch) = (.012+.008)/(.012+.008+.064+.576) = .03
- P(catch) = .108 + .016 + .072 + .144 = .34
- P(!catch) = .012 + .064 + .008 + .576 = .66
- $P(cavity) = .53^*.34 + .03^*.66 = .2$

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576
Figure 13.3	Figure 13.3 A full joint distribution for the <i>Toothache</i> , <i>Cavity</i> , <i>Catch</i> world.			

- P(cavity) = P(cavity|catch)*P(catch) + P(cavity|!catch)*P(!catch)
- P(cavity|catch) = (.108+.072)/(.108+.016+.072+.144) = .53
- P(cavity|!catch) = (.012+.008)/(.012+.008+.064+.576) = .03
- P(catch) = .108 + .016 + .072 + .144 = .34
- P(!catch) = .012 + .064 + .008 + .576 = .66
- $P(cavity) = .53^*.34 + .03^*.66 = .2 = .108 + .012 + .072 + .008$

Full Joint Distributions

- Entry for every combination of random variables
- What is the size of the table for N boolean variables?

	toothache		\neg toothache	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576
Figure 13.3	A full joint distribution for the <i>Toothache</i> , <i>Cavity</i> , <i>Catch</i> world.			

Full Joint Distributions

- Entry for every combination of random variables
- Does not scale
 - (2^N) for boolean variables, much worse for non!

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch	$\neg catch$
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576
Figure 13.3	A full joint distribution for the <i>Toothache</i> , <i>Cavity</i> , <i>Catch</i> world.			

Independence

Figure 13.4 Two examples of factoring a large joint distribution into smaller distributions, using absolute independence. (a) Weather and dental problems are independent. (b) Coin flips are independent.