

Introduction to Artificial Intelligence
COSC 4550 / COSC 5550

Professor Cheney
9/15/17

hillclimbing is greedy local search

very simply to code and understand:

if your new state is better, keep it
if your new state is worse,

throw it away and keep your old state

what if just sometimes,
we accepted negative mutations?

stochastic hillclimbing

accept with probability p<0

what if instead we used
random initialization?

random-restart hillclimbing

random-restart hillclimbing

random-restart hillclimbing

random-restart hillclimbing

“basin of attraction”

how do you decide the probability of
(when to) accept a negative mutation or not?

(i.e. when should you explore
and when should you exploit?)

explore (take risky moves) early in search
so that you have more time to
catch up (and exploit) later on

simulated annealing

the probability of accepting a new negative
mutation decreases over optimization time

at first the point (current state) is randomly
moving around all over the place (state space)

but as the system “temperature cools” over time,
it settles down, and resists change

and will only accept a new position if it's an
improvement over the current one

genetic algorithms

population based methods

accept best k out of n
individuals in a population

then mutate them to
generate individuals to fill

back out the population

crossover point
parent 2

parent 1 offspring 1

offspring 2

making large random changes are unlikely to be beneficial

instead explore the space (make large changes) by
combining (ideally the good) parts of multiple partial solutions

exploration through crossover

exploration through crossover

this may be combined with
single point mutations as well

9

+ = ???

to learn more, take:

COCS 4560 / COCS 5560
Modern Robots

gradient-based methods

if we know our objective function, f(x),

(and it's differentiable)

we can just find the slope at our current point,

to tell us which direction to go to get better!

, f(x)

, x
1

 ∂f
∂x

1

, f(x)

, x
1

 ∂f
∂x

1

update x with:

x
1
←x

1
 + α * ∂f

∂x
1

step size

, f(x)

, x
1

 ∂f
∂x

1

update x with:

x
1
←x

1
 + α * ∂f

∂x
1

step size

more generally:
(for all parameters x = x

1
, x

2
, x

3
, … , x

n
)

x←x + α * f∇

 ∂f
∂x

1

∇f =
 ∂f
∂x

2

 ∂f
∂x

3

 ∂f
∂x

n

, , , … ,

this means, for each x
i
, consider the effect

of changing (only) x
i
on the value of f(x)

“gradient”
of f(x)

if you have two nearby points,
you can estimate the derivative of f(x) as:

f(x
b
) - f(x

a
)

x
b
 - x

a

f'(x) ~

if you have two nearby points,
you can estimate the derivative of f(x) as:

f(x
b
) - f(x

a
)

x
b
 - x

a

f'(x) ~

x
b

x
a

if you have two nearby points,
you can estimate the derivative of f(x) as:

f(x
b
) - f(x

a
)

x
b
 - x

a

f'(x) ~

x
b

x
a

this is (essentially)
what hillclimbers and

genetic algorithms
are doing

to learn more,
take numerical methods:

COCS 3340 – Intro to Scientific Computing

COCS 5310/5340/5345 – Computational Methods
 in Applied Sciences (I,II,III)

COCS 4340 – Numerical Methods for Ordinary
 and Partial Differential Equations

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

