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hillclimbing is greedy local search

very simply to code and understand:

if your new state is better, keep it
if your new state is worse, 

throw it away and keep your old state



  



  

what if just sometimes,
we accepted negative mutations?



  

stochastic hillclimbing

accept with probability  p<0



  

what if instead we used
random initialization?



  

random-restart hillclimbing



  

random-restart hillclimbing



  

random-restart hillclimbing



  

random-restart hillclimbing

“basin of attraction”



  

how do you decide the probability of
(when to) accept a negative mutation or not?

(i.e. when should you explore
and when should you exploit?)

explore (take risky moves) early in search
so that you have more time to
catch up (and exploit) later on



  

simulated annealing



  

the probability of accepting a new negative 
mutation decreases over optimization time 

at first the point (current state) is randomly 
moving around all over the place (state space)

but as the system “temperature cools” over time,
it settles down, and resists change

and will only accept a new position if it's an 
improvement over the current one



  



  



  

genetic algorithms



  

population based methods

accept best k out of n 
individuals in a population

then mutate them to 
generate individuals to fill 

back out the population



  

crossover point
parent 2

parent 1 offspring 1

offspring 2

making large random changes are unlikely to be beneficial

instead explore the space (make large changes) by
combining (ideally the good) parts of multiple partial solutions



  

exploration through crossover



  

exploration through crossover



  

this may be combined with 
single point mutations as well
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+ = ???



  



  



  

to learn more, take: 

COCS 4560 / COCS 5560
Modern Robots



  

gradient-based methods



  

if we know our objective function, f(x),

(and it's differentiable)

we can just find the slope at our current point,
 

to tell us which direction to go to get better!
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more generally:
(for all parameters x =   x
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this means, for each x
i
, consider the effect

of changing (only) x
i 
on the value of f(x)

“gradient” 
of f(x)



  

if you have two nearby points,
you can estimate the derivative of f(x) as:
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if you have two nearby points,
you can estimate the derivative of f(x) as:
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this is (essentially) 
what hillclimbers and 

genetic algorithms
are doing



  

to learn more,
take numerical methods: 

COCS 3340 – Intro to Scientific Computing

COCS 5310/5340/5345 – Computational Methods
                                                in Applied Sciences (I,II,III)

COCS 4340 – Numerical Methods for Ordinary
                         and Partial Differential Equations
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