

Introduction to Artificial Intelligence
COSC 4550 / COSC 5550

Professor Cheney
9/11/17

how best should we expand the frontier in search?
(cont.)

breadth-first search

b = 2
nodes visited:

1

2

4

= 20

= 21

= 22

space complexity: bd = O(bd)

time complexity: b0 + b1 + b2 + … + bd = O(bd)

note: a typical chess game ~ 40-70 moves long
and has a branching factor ~ 35

1 2

2

3

4 5 6

5

6

7 8

3

4 5 6 7 8 9

987654

16 15 14

13

1211

10

9

10

7

8

9

8 9

17

0

breadth-first search always finds
the shallowest goal node

but shallowest is only optimal if
all step-costs are equal

uniform-cost search

expand the frontier node with
the current lowest cost

1) frontier: Sibiu (cost = 0)

2) frontier: S→RV (c=80), S→F (c=99)

3) frontier: S→ RV→P (c=80+97=177), S→F (c=99)

4) frontier: S→ RV→P (c=80+97=177), S→F→B (c=99+211=310)

5) frontier: S→ RV→P →B (c=80+97+101=278), S→F→B (c=99+211=310)

6) try to expand from goal node (B)??? → terminate search… we have a winner!

 S→ RV→P →B has lowest cost of 278

We expand from the least cost node/path

If we expand from a goal node,
that must be the least cost path to that node

“uniform-cost search expands nodes
in order of their optimal path”

depth-first search

expand the deepest frontier node

(LIFO)

why??? we already know BFS
finds shallowest goal node?

let's look at the complexity:

b = 2

nodes visited:

1
2
4
8

= 20

= 21

= 22

= 23

= b0

= b1

= b2

= b3

 b0 + b1 + b2 +b3 + … + bm = O(bm)

(m is the max depth, d is the shallowest goal node)

this can't be better than BFS's O(bd) (since m≥d)

time complexity:

b = 2

nodes stored:

1
2
2
2

= 1
= b
= b
= b

 1 + b + b +b + … + b = O(bm)

DFS has a better space complexity than BFS's O(bd)!

space complexity:

1 17

2

3

4 16 15

5

6

7 8

18

2322212019

31 30 29

28

2726

25

24

14

11

10

9

12 13

32

0

DFS has a seemingly similar time complexity
and better space complexity than BFS

why don't we always use it? what can go wrong?

m >> d

unbalanced trees!

 if goal node is #9?

time to reach goal w/ DFS:

time to reach goal w/ BFS:

10

3

unbalanced trees!

what if that branch never ended?

time to reach goal w/ DFS:

time to reach goal w/ BFS:

∞

3

how can we limit the depth of branches in DFS?

depth-limited search

do DFS, but cut short any branches
greater than ℓ edges deep

ℓ = 2
now we are just
doing DFS on a

balanced(-ish) tree!

from before (but now with max depth m = ℓ):

time complexity = O(bℓ)
space complexity = O(bℓ)

but what's the most efficient value of ℓ?

let's just do them all! (huh…?)

iterative-deepening search

iteratively do depth-limited search for ℓ=0, ℓ=1, ℓ=2, …

ℓ=0:

space:
O(bℓ)

time:
O(bℓ)

O(1) O(0)

ℓ=1: O(b) O(b)

ℓ=2: O(b2) O(2b)

ℓ=3: O(b3) O(3b)

so when do we stop?

when we hit the shallowest goal node!

this occurs when ℓ = d

What's the complexity of all ℓ=0, ℓ=1, ℓ=2, … ℓ=d, together?

time complexity:
O(b0) + O(b1) + O(b2) + … + O(bd) = O(bd)

space complexity:
O(0) + O(b) + O(2b) + … + O(db) = O(db)

iterative deepening search has better (or as good)
time and space complexity compared to DFS and BFS!

ℓ=0 ℓ=1

0 ℓ = 0

1

0 ℓ = 1

1

0 ℓ = 2

2

3

1

0 ℓ = 3

2

4

3

5

1

0 ℓ = 4

2

5

3

6

4

8

7

1

0 ℓ = 5

2

7

3

8

4

11

9

5

10

12

6

1

0 ℓ = 10

2

17

3

18

4

27

19

5

20

28

11

6

7 8 9

10

12

13 14 15

16

29

21 22 23

24

25

26

30 31 32

1 17

2

3

4 16 15

5

6

7 8

18

2322212019

31 30 29

28

2726

25

24

14

11

10

9

12 13

32

0 ℓ = 17

iterative-deepening search expands away
from start node like BFS, but has

memory efficiency like DFS

how can we make it even better?

the most expensive cases are long paths to the goal

(long paths are the most expensive for all algorithms,
since the # of nodes grows exponentially with depth)

bidirectional search

if we know what our goal state is,
we can treat it as a second “start” state

and work backwards until the two searches meet

1 2

2

3

4 5 6

5

6

7 8

3

4 5 6 7 8

87654

1 2 3

4

56

7

8

7

8

8

0

0

bidirectional breadth first search

if the total path length to the goal is d,
each search only has to go d/2 nodes until they meet

time complexity: 2*b0 + 2*b1 + 2*b2 + … + 2*bd/2 = O(bd/2)

space complexity: 2*b0 + 2*b1 + 2*b2 + … + 2*bd/2 = O(bd/2)

note: bidirectional search can cut the depth of most of these algorithms in half

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

