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Studying Biology with
Evolutionary Computation
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Computer (Virus) Evolution:
Avida (Ofria, Adami, Brown '93)
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Computer (Virus) Evolution:
Avida (Ofria, Adami, Brown '93)

(a) nop-A No-operation instruction; modifies other instructions

(b) nop-B No-operation instruction; modifies other instructions

(c) nop-C No-operation instruction; modifies other instructions

(d) if-n-equ Test if two registers contain equal values

(e) if-less Test if one register contains a lesser value than another

(f) pop Remove a number from a stack and place it in a register

(g) push Copy the value of a register onto the top of a stack

(h) swap-stk Toggle the active stack

(i) swap Swap the contents of two specified registers

(j) shift-r Shift all the bits on a register one to the right

(k) shift-1 Shift all the bits on a register one to the left

() inc Increment a register

(m) dec Decrement a register

(n) add Calculate the sum of the values in two registers

(o) sub Calculate the difference between the values in two registers

(p) nand Perform a bitwise NAND on the values in two registers

(q) IO Output the value in a register and replace with a new input

(r) h-alloc Allocate memory for an offspring

(s) h-divide Divide off an offspring contained in memory (specified by heads)
(t) h-copy Make a copy of a single instruction in memory (specified by heads)
(u) h-search Find a pattern of nop-instruction in the genome

(v) mov-head Move a head to point to the same position as the flow-head
(w) jmp-head Move a head by a fixed amount stored in a register2

(x) get-head Write the position of a specified head into a register

(y) if-label Test if a specified pattern of nops has recently been copied

(z) set-flow Move the flow-head to a specified position in memory
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L.otka—Volterra equations

dx

— = oxr — px

o Bxy,

dy 5

—_— = 0y —

dt y—7Yy,
where

X is the number of prey (for example, rabbits);

y is the number of some predator (for example, foxes);

Population
A

Predator

Time



Computer (Virus) Evolution:
Avida (Ofria, Adami, Brown '93)

Nature 461, 1243-1247 (29 October 2009} | doi:10.1038/natureDB480; Received 9 July 2009; Accepted
28 August 2009; Published online 18 October 2009; Corrected 29 October 2009

Genome evolution and adaptation in a long-term
experiment with Escherichia coli

Jeffrey E. Elnarriclcccj-r*?—r Dong Su Yuli*?—; Sung Ho chnz, Haeyoung ]eongz, Tae
Kwang Ghz*é, Dominigue Schneideri, Richard E. Lenskil & Jihyun F. Kim<:2

Every day, the cultures are propagated,;

Every 75 days (500 generations),
mixed-population samples are frozen away;

Mean fitness, relative to the ancestor,
is estimated using the mixed-population samples.

Now 60,000+ generations!
(since 1988)
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Evolution of digital organisms at high mutation rates
leads to survival of the flattest
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Genome complexity, robustness and genetic interactions
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The evolutionary origin of complex features

Richard E. Lenskil, Charles Ofria%, Robert T. Pennock2 & Christoph Adami®
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Table 1 Rewards for performing nine one- and two-input logic functions

Function name Logic operation Computational merit
NOT ~A;, ~B 2
NAND ~(A and B} 2
AND Aand B 4
OR_N (A or ~B); (~A or B) 4
OR AorB 8
AND_N (A and ~B); (~A and B) 8
NOR ~Aand ~B 16
XOR (A and ~B) or (~A and B) 16
EQU (A and B) or (~A and ~B) 32

The symbal '~ denotes negation. The reward for computational merit increases with 27, where n is
the minirmurm number of nand operations needed to perform the listed function. Symmetrical
operations, shown separated by a semi-colon, are treated as the same function. No added
benefit is obtained for performing any function multiple times. These functions include all one-
and two-input logic operations except ECHO, which requires no nand operations and was not
rewarded.
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Figure 4 Functional-genomic array for the first organism to perform EQU in the case-
study population. Its genome sequence is shown to the left; the instruction highlighted in
yellow is the pivotal mutation that yielded EQU but simultaneously eliminated AND. Top
labels denote replication (Repl.) and logic functions; associated colours show whether this
organism can (green) or cannot (red) perform the function. The fill in each interior cell
shows the effect on the function of replacing the instruction with a null instruction. Red,
null mutation destroys existing function; blank, null mutation has no qualitative effect;
green, null mutation produces new function. The number of state changes for each
function is shown at the bottom.



Constraints of
Evolutionary Processes



Natural Selection Fails to Optimize Mutation Rates for
Long-Term Adaptation on Rugged Fitness Landscapes

Jeff Clune'**, Dusan Misevic?, Charles Ofria’, Richard E. Lenski?, Santiago F. Elena®?, Rafael Sanjuan®°®



We studied the evolution of mutation rates using the Awvida
digital evolution platform [25-34]. To test empirically whether
there was an intermediate, optimal rate of mutation that
maximized adaptation, we performed a series of evolution
experiments. In each experiment, a genetically homogenous
population was placed m a novel environment where 1t evolved
for 150,000 updates (—15,000 generations) at a constant mutation
rate (see Methods). We explored 15 different mutation rates
spanning six orders of magnitude (107> to 10 mutations per
genome per generation). The final fitness values confirmed that
there was an optimal mutation rate at an intermediate value, with

op=%.641 (Figure 1). An analysis of the temporal dynamics of
these experiments showed that this rate yielded the highest fitness
from about generation 230 onward. Interesuingly, for the very
earliest time points (before generation 50), the lowest mutation rate
{10_5} produced the highest fitness values, whereas for generations
20-230 a mutation rate of 2.2 gave the highest fitness values.



To assess whether evolution would produce organisms with
mutation rates near the long-term U,,, we ran additional
experiments in which mutation rates were allowed to change
(see Methods), starting from rates either below (10™7) or above (10)
the optimum. Strikingly, mutation rates evolved to levels far below
the long-term U, regardless of the starting value (Figure 1). In
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Figure 1. Evolution of suboptimal mutation rates on a complex
fitness landscape. Fitness is shown as a function of the genomic
mutation rate. The solid line shows mean fitness of the final population,
itself averaged over 50 runs, for 15 different static mutation rates
(U=10"">,10"% and from 10”3 to 10 at 1/3 logqg intervals). The shaded
area represents*1 s.e.m. The optimal mutation rate—the rate that
maximized final fitness—was U,,,~4.641 (vertical dashed line). The two
colored points show the mean fitness and mutation rate of the final
population, averaged over 50 runs, in experiments where mutation
rates freely evolved with starting values of either 10 (red) or 107 (blue)
(error bars represent®*1 s.e.m). Evolved mutation rates and fitness
values were both orders of magnitude lower than those observed in the
experiment with U,,.
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Figure 2. Evolutionary trajectories for fitness and mutation
rate on a complex fitness landscape. (A) Evolution of average log-
fitness=1 s.e.m. for treatments with the mutation rate fixed at
Uope=4.641 (black) and for treatments with variable mutation rates
starting at either 10 (red) or 102 (blue). (B} Evolution of average log
genomic mutation rate*1 s.e.m. for treatments with variable mutation
rates starting at either 10 (red) or 10™2 (blue). The black line indicates
the mutation rate that had produced the highest average fitness for
that time point.



We conclude from the results presented thus far that the failure
of the evolving populations to achieve or even maintain the
mutation rates that maximize long-term adaptation reflect the
conflict between the short-term cost of deleterious mutations and
the long-term potential for adaptive evolution. We further
hypothesize that the resolution of this tension may depend on
the topology of the fitness landscape on which evolution occurs. In
a rugged fitness landscape, where there are multiple peaks
separated by maladaptive valleys [35,36], populations at a local
optimum must traverse regions of low fitness in the short-term in
order to reach higher-fitness solutions in the long-term. This
conflict leads us to hypothesize that the inability of natural
selecion to optimize mutation rates may depend on the
ruggedness of the fitness landscape. The ideal test of this
hypothesis requires comparing the evolution of mutation rates
on [litness landscapes with and without fitness valleys. This test
cannot be performed using the standard Avida setup, owing to the
presence ol extensive genetic interactions that make the fitness
landscape complex and rugged [23]. We therefore modified Avida
to allow simple, explicit, user-defined fitness functions that allowed
us to manipulate the ruggedness of the fitness landscape (Methods,
Figure 3). Adaptation occurs so fast when using these simple
configurations that we also had to make the environment fluctuate
between two ‘seasons’ in order to ensure a continual opportunity
for beneficial mutations. These fluctuations mean that genotypes
that are more fit in one season are less fit in the other (Figure 3).
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Figure 3. Evolution of mutation rates on simple fitness landscapes with different ruggedness. Here, fitness depended solely on the
match between the environment and the number of a key instruction that organisms had in their genomes. In season A (left column) the key
instruction was deleterious while it was beneficial in season B (center column). Rugged fitness landscapes with maladaptive valleys (rows 2-4) were
introduced by setting the fitness of organisms with intermediate numbers of the key instruction to the minimum fitness level of one. The right=most
column shows the results of evolution experiments under each of these selective regimes. Final fitness is shown as a function of genomic mutation
rate for both static and dynamic mutation rates. The solid black line represents the average of the mean fitness across 10 runs for each of 100
different static mutation rates ranging from U=0.01 to 1 in increments of 0.01. The two colored points represent the mean fitness and mutation rate,
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Figure 4. Evolutionarily stable mutation rate does not depend
on the frequency with which the mutation rate changes (II).
The evolution of mutation rates in the explicit fitness landscape with a
valley size of three is shown for several values of I1, as indicated by the
colored key. Each curve shows the average of 20 runs; the adjacent
bands represent*1 s.e.m. The value of U,,; was determined in previous
experiments (see text). The rate of approach toward the evolutionarily
stable mutation rate depends on II, but the equilibrium value itself
does not.



Author Summary

Natural selection is shortsighted and therefore does not
necessarily drive populations toward improved long-term
performance. Some traits may evolve because they
provide immediate gains, even though they are less
successful in the long run than some alternatives. Here,
we use digital organisms to analyze the ability of evolving
populations to optimize their mutation rate, a fundamen-
tal evolutionary parameter. We show that when the
mutation rate is constrained to be high, populations adapt
considerably faster over the long term than when the
mutation rate is allowed to evolve. By varying the fitness
landscape, we show that natural selection tends to reduce
the mutation rate on rugged landscapes (but not on
smooth ones) so as to avoid the production of harmful
mutations, even though this short-term benefit limits
adaptation over the long term.



CONGRATS — you made it!!!
Thanks!

Questions?
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