THIS PDF FILE
FOR PROMOTIONAL USE ONLY

2 Artificial Intelligence: The Landscape

In the winter term of the 2003-2004 academic year, I (Rolf) gave a
series of lectures on modern artificial intelligence that was broadcast
from the University of Tokyo over the entire globe, to Beijing (China),
Jidda (Saudi Arabia), Warsaw (Poland), Munich (Germany), and Zurich
(Switzerland). This global virtual lecture hall was connected via video
conferencing technology, enabling the full participation of the students
from all the sites; they could ask questions, and could also show video
clips or presentations from their laptops. The main topic of this series
was the impact of embodiment on a theory of intelligence, or in other
words how intelligence and body are related to one another. Every
week, the last half hour of these global lectures was devoted to the
presentation of the latest research in the field of artificial intelligence,
mostly from Japanese researchers. Most of these top-notch researchers
presented robots that locomote: robots that move like snakes, or two-
legged robots that walk like humans, or that can stand up from a lying-
down position. This observation raises the question of what this walking
and locomotion business has to do with intelligence; with thinking. Why
do research on how robots, animals, and people move if you are inter-
ested in understanding intelligence? One of the goals of this book is to
try and answer this rather puzzling question. We hope that as we go
along it will become clear that the question is very sensible, that the
relations between moving and thinking are in fact quite straightforward,
and that intelligence cannot be understood if we do not understand
basic movement—a point that we have already argued in the previous
chapter.

But before we embark on this endeavor, in order get a better feel for
the research area that we are talking about, we would like to outline the
landscape of artificial intelligence: that is, the structure of this scientific
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discipline, the kind of research performed, and how the various disci-
plines relate to one another.

The first thing to note is that there is a clear distinction between a
traditional or classical approach, also called the symbol-processing
approach, and a modern, embodied one, a distinction that will be
explained in more detail just below (see figure 2.1). It is interesting to
observe that when you type “embodied artificial intelligence” into a
search engine such as Google, you do not find many books or articles
with this term in their title. And, as closer analysis shows, the results from
the search do not reflect in any way what researchers in this field actu-
ally investigate these days. Now what does this mean for the field? This
is one of the questions this chapter tries to answer.

After outlining the successes and problems of the classical approach
we will turn to what we have called “the embodied turn,” i.e., the new
paradigm for artificial intelligence research. We will discuss how the role
played by neuroscience in this endeavor has changed over time, and then
look at how the field of classical Al split into many disciplines. This will
be followed by an overview of the disciplines most relevant to embod-
ied intelligence, such as biorobotics, developmental robotics (including
humanoid robotics), ubiquitous computing and interfacing technology,
artificial life and multiagent systems, and evolutionary robotics.

(a)

Figure 2.1

Two ways of approaching intelligence. (a) The classical approach. The focus is on the brain
and central processing. (b) The modern approach. The focus is on the interaction with the
environment. Cognition is emergent from the system-environment interaction, as we will
argue throughout the book.
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2.1 Successes of the Classical Approach

The term embodied intelligence was introduced in the mid-1980s in the
field of artificial intelligence as a reaction against the classical approach,
which views intelligence as merely a matter of abstract symbol process-
ing. What matters in the classical approach is the algorithm or the
program—the software, if you like—and not the hardware (the body or
brain) on which it runs. Abstract functioning that is independent of the
specifics of a particular hardware is an extremely powerful idea and
constitutes one of the main reasons why computing has conquered the
world, so to speak: all that matters are the programs that run on your
computer; the hardware is irrelevant. This line of thinking goes back to
the famous Dartmouth conference, held in 1956 in the small town of
Hanover, New Hampshire, when “artificial intelligence” was officially
launched as a new research discipline (for a very short history of artifi-
cial intelligence, see focus box 2.1). The American philosopher John
Haugeland of the University of Chicago, author of the well-known book
Artificial Intelligence: The Very Idea, an excellent philosophical treatise
on traditional or classical artificial intelligence, coined the term
GOFAI—“Good Old-Fashioned Artificial Intelligence”—to designate
this approach (Haugeland, 1985).

In the classical perspective of artificial intelligence the human being
was placed at center stage, with human intelligence as the main focus. As
a consequence, the favorite areas of investigation were natural language,
knowledge representation and reasoning, proving mathematical theo-
rems, playing formal games like checkers or chess, and expert problem
solving. This last area became extremely popular in the 1980s. Expert
systems, as these models were called, were intended to replace human
experts, or at least take over parts of their tasks, in areas like medical and
technical diagnosis, configuration of complex computer systems, com-
mercial loan assessment, and portfolio management. These systems epit-
omize the classical approach of viewing humans as symbol processing
systems, i.e., as systems that manipulate symbols as computer programs
do. This so-called information-processing approach strongly influenced
researchers not only in artificial intelligence but also in psychology and
the cognitive neurosciences. And now it seems that scientists as well as
people in general see human intelligence as information processing:
“What else could it be?” is the standard defense of this view. Computer
scientists and psychologists teamed up to develop information-processing
models of human problem-solving behavior, in particular expert systems.



28 I Intelligence, Artificial Intelligence, Embodiment, and What the Book is About

Focus Box 2.1
The History of Al

Some authors (Brighton, 2004) consider the history of AI to begin around 3000 BC,
apparently in Luxor, where a papyrus has been found that reports medical knowl-
edge in expert system form: “If patient has this symptom, THEN he has this injury
with this prognosis IF this treatment is applied.” But usually it is agreed that the
field really began with the famous Dartmouth conference in 1956 where, among
others, the “fathers of AL” Marvin Minsky, John McCarthy, Allen Newell, Herbert
Simon, and Claude Shannon convened to proceed on “the conjecture that every
aspect of learning or any other feature of intelligence can in principle be so pre-
cisely described that a machine can be made to simulate it.” (Dartmouth Artificial
Intelligence Project Proposal, McCarthy et al., Aug. 31, 1955). The discussions
revolved around the question of how or whether human thinking and processes
could take place in a computer. Addressing this question required, and still requires,
knowledge from many different disciplines. Finally, a common language had been
found with which researchers from different disciplines could talk to each other and
formulate their theories; this was the language of information processing and
abstract symbol manipulation. The field started to take off and spread across the
United States. Natural-language programs, programs for proving mathematical the-
orems, for manipulating formulas, for solving abstract problems, for playing formal
games like checkers and chess, for planning, and for solving real-world problems—
the expert systems—emerged and multiplied everywhere: the field was booming.

Expert systems were developed specifically for medical diagnosis, analysis and
repair of malfunctioning devices, commercial loan assessment in banks, configura-
tion of complex computer systems, and portfolio management, to name but a few.
The idea was to model a human expert, such as an experienced physician, using sets
of rules such as “IF the patient has red spots on skin, and patient has high fever,
and ... THEN the infection is most likely caused by . ..” (note the similarity to the
Egyptian system). Herbert Simon, in 1965, predicted that by 1985 machines would
be capable of doing any mental work a man can do. However, toward the end of
the 1980s most companies that had started developing expert systems went bank-
rupt, and the goal of building systems capable of autonomously solving problems—
and thereby replacing human expertise—was largely abandoned. It had become
clear that conceptualizing human experts as symbol-processing machines was in-
appropriate and did not lead anywhere. Practitioners changed the focus from
autonomous problem solving to supporting human intelligence.

Besides the field of expert systems, there were serious setbacks and disappoint-
ments in the areas of computer vision and speech processing. Human-level per-
formance in perception—recognizing objects at various distances, orientations,
lighting conditions, and partial occlusions—has not even remotely been achieved
in artificial systems. Similarly, in spite of huge investments in speech systems, their
capacity, accuracy, and therefore their practical utility has remained below expec-
tations. Vision and speech are particularly challenging because they are natural phe-
nomena that rely heavily on the real world. Trying to model human visual perception
and language through (typically computationally intensive) algorithms did not seem
to work either.

Luckily for many researchers in these fields, a new discipline arose in the early
1980s, connectionism, which tries to model phenomena in cognitive science with
neural networks. Neural networks are computational models that are inspired by
biological brains, and therefore many of them inherit the brain’s intrinsic ability for
adaptation, generalization, and learning. Because they are based on pattern pro-
cessing rather than symbol manipulation, researchers were hoping that neural net-
works would be better able to describe natural mental phenomena, after expert
systems and related algorithms had failed to do so. In fact connectionism was not
exactly a new discipline: neural networks had been around since the 1940s, when
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Focus Box 2.1
(continued)

they were first suggested as models of biological neural networks (e.g., McCulloch
and Pitts, 1943). Their reappearance in the 1980s as computational devices was more
like a renaissance. However, although there was definite progress, because most of
these models were just algorithms like all the others, they did not end up solving
the big problems of mastering the interaction with the real world either. Despite
the progress there were no real breakthroughs in the use of neural networks for
capturing expert knowledge, for building speech systems, or for perception of the
environment. The recognition of this fact was another frustration for artificial intel-
ligence researchers.

After these setbacks, the field was in dire need of a real paradigm shift. In the
mid-1980s Rodney Brooks suggested that all of this focus on logic, problem solving,
and reasoning was based on our own introspection—how we tend to see ourselves
and our own mental processes—and that the way artificial intelligence was pro-
ceeding was misguided. Instead, he proposed, essentially, that we should forget
about symbol processing, internal representation, and high-level cognition, and
focus on the interaction with the real world: “intelligence requires a body” was the
slogan of the new paradigm of embodied intelligence. With this change in orienta-
tion, the nature of the research questions also started to shift: the community got
interested in locomotion, manipulation, and, in general, how an agent can act suc-
cessfully in a changing world.

As a consequence, many researchers around the world started working with
robots. However, even working on robots did not automatically solve the problems:
the performance of most robots on real-world tasks—walking, running, perception,
and object manipulation—remained unsatisfactory. So, there was still something
missing. The reason for this, we strongly suspect, was that the robots were often used
in the classical way: researchers programmed the robots directly to do their tasks.
This often led to computationally expensive solutions that not only produced un-
natural behavior, but were also too slow to achieve, for example, running behavior.
Thus, the concept of embodiment not only implies that the agent must have a
body—obviously robots do have bodies—it also means that one should follow a par-
ticular style of thinking when building robots or generally intelligent agents; one
should design with a particular theoretical attitude in mind, as we will elaborate in
this book. Although we are convinced of the potential of this approach, only time
will tell whether it results in greater success than the previous ones.

In the 1980s there was a lot of hype surrounding expert systems and many
companies started to develop them—alas, many soon went bankrupt after
this way of conceptualizing human expertise and human intelligence in
general turned out to be flawed, as discussed in the next section (see also
Clancey, 1997; Pfeifer and Scheier, 1999; and Winograd and Flores, 1986).

By the mid-1980s, the classical approach had grown into a large disci-
pline with many facets and with fuzzy boundaries, but despite some of
its flaws, it can now claim many successes. Whenever you switch on your
laptop computer you are starting up many algorithms that have their
origin in artificial intelligence. If you use a search engine on the internet
you are, for example, making use of clever machine-learning algorithms.'
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If you use a text-processing system, it in turn uses algorithms, which try
to infer your intentions from the context of what you have done earlier,
and will often volunteer advice. Natural-language interfaces, computer
games, and controls for appliances, home electronics, elevators, cars, and
trains abound with Al algorithms. More recently, data-mining systems
have been developed that heavily rely on machine-learning techniques,
and chess programs have been designed that can beat just about any
human on Earth, which is a considerable achievement indeed! The devel-
opment of these kinds of systems, although they have their origin in
artificial intelligence, has now become indistinguishable from applied
informatics in general: they have become an integral part of today’s
computer technology.

2.2 Problems of the Classical Approach

However, the original intention of artificial intelligence was not only to
develop clever algorithms, but also to understand natural forms of intel-
ligence, which requires a direct interaction with the real world. It is now
generally agreed that the classical approach has failed to deepen our
understanding of many intelligent processes. How do we make sense of
an everyday scene or recognize a face in a crowd, for example? How do
we manipulate objects, especially flexible and soft objects and materials
like clothes, string, and paper? How do we walk, run, ride a bicycle, and
dance? What is common sense all about, and how are we able to under-
stand and produce everyday natural language? Needless to say, trying to
answer these questions requires us to consider not just the brain, but how
the body and brain of an intelligent agent interact with the real world.
Classical approaches to computer vision (which is one form of artifi-
cial perception), for example, have been successful in factory environ-
ments where the lighting conditions are constant, the geometry of the
situation is precisely known (i.e., the camera is always in the same place,
the objects always appear on the conveyor belt in the same position, the
types of possible objects are known and can therefore be modeled), and
there is always ample energy supply. However, when these conditions do
not hold, such systems fail miserably, and in the real world, stable and
benign conditions are never assured: the distance from an object to your
eyes changes constantly, one of the many consequences of moving
around; lighting conditions and orientation are always changing; objects
are often entirely or partially blocked from view; objects themselves
move; and they appear against very different and changing backgrounds.
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Vision systems with capacities similar to human vision, which can deal
quickly with such conditions, are far from being realized artificially.

Animals and humans—including simple animals like insects—are
enormously skilled at manipulating objects. Ants, for example, are known
for their great ability to carry large, bulky objects such as leaves, and they
do so by cooperating with other ants. Watch a dog chew on a bone by
controlling it with its paws, mouth, and tongue: unbelievable! Although
there are specialized machines that can out perform humans on virtually
any given manipulation task—like driving a screw, picking up objects for
packaging in production lines, lifting heavy objects on construction sites,
or making very precise movements in minimally invasive surgical oper-
ations—the general-purpose manipulation abilities of natural systems
are still unparalleled.

Locomotion is another case in point. Animals and humans move with
an astonishing flexibility and elegance. Watching insects fly in complex
patterns and with enormous precision is simply mind-boggling, especially
since we know how small their brains really are: a million times smaller
than the human brain. Watching a cheetah running at great speed is an
esthetic pleasure. Monkeys move through the rain forest by climbing,
swinging, walking, and running with uncanny talent. Humans can walk
with a bag in one hand, an arm around a friend, up and down stairs, while
looking around and smoking a cigarette, or they can walk in arbitrarily
silly ways, as demonstrated by John Cleese in the famous Monty Python
sketch “The Ministry of Silly Walks”; no robots can even come close to
any of these feats of agility yet. And building a running robot is still con-
sidered one of the great challenges in robotics.

Although there has been a considerable amount of work on robots
since the early days of classical artificial intelligence, starting in the 1960s,
the performance of these robots has not been very impressive in terms of
orientation ability, speed, and capacity to manipulate objects. One of the
important reasons for this is that in the classical view, the ability to figure
out where you are is based on detailed inner models or representations
of the outside world—which implies that these representations either
have to be programmed into the robots (which is done, for example, in
industrial robotics) or the robots have to learn them as they interact with
their environment; and they have to be continuously updated in order to
remain consistent with the real world. The more complex these models
are, the more effort is needed to acquire the relevant data to maintain
them. Take a map of a city as an example of a model of part of the real
world. The more detail the map contains, the harder it will be to keep it
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in tune with reality. If construction sites, temporary roadblocks, or current
traffic density are taken into account, the entire map has to be updated
almost continuously. If the map is intended for car drivers, as are those
used in car navigation systems, information about traffic density and
diversions is extremely useful, but keeping it up to date requires consid-
erable resources. For other purposes, such as a geography class, a coarse
map is more than sufficient and requires very little updating.

An issue which has attracted a lot of attention is that of common sense,
because it is fundamental to mastering our everyday lives and is also
crucial for understanding natural language. In the classical approach,
common sense has been viewed as “propositional”: the building blocks
of common-sense knowledge are considered to be statements—proposi-
tions—such as “cars cannot become pregnant,” “objects (normally) do
not fly,” “people have biological needs (they get hungry and thirsty),”
“viruses cause infections,” “diseases should be avoided,” “if you drop a
glass it will normally break,” etc. Building systems that incorporate this
type of common-sense knowledge has been the goal of many classical
natural-language and problem-solving systems like CYC (see Guha and
Lenat, 1990, for a report on the first five years of the project). The letters
CYC stand for encyclopedia, which indicates what the researchers in this
project were after, namely this kind of encyclopedic, or propositional,
knowledge. The Stanford computer scientist and artificial intelligence
pioneer Doug Lenat started this controversial project in 1984, and in
1991 he predicted that by the mid-1990s his software would be able to
obtain new knowledge by simply reading text rather than being pro-
grammed by humans (Wood, 2002); this is one of the many predictions
in AI that have not materialized. Surprisingly, some researchers continue
to believe that a large collection of propositions—Ilogic-based state-
ments—together with a set of rules of inference is, in essence, all that is
needed to represent common-sense knowledge: in 2004 DARPA, the
Defense Advanced Research Project Agency, the American military’s
research arm, awarded two American researchers a $400,000 research
contract to try and build a machine that could learn only by reading text.
One of the problems with the CYC project, and with all succeeding proj-
ects with a similar aim was (and still is) that common sense cannot be
captured by a set of rules, but requires interaction with the real world.

For example, we all have an intuitive understanding of the word drink-
ing. If you now freely associate to drinking, what comes to mind might
be: thirsty, liquid, beer, hot sunshine, the feeling of liquid in your mouth,
on the lips, on your tongue when you are drinking, how it runs down your



2. Artificial Intelligence: The Landscape 33

throat and how it feels in your stomach, and the experience of relief after
drinking when you have been really thirsty, the experience of seeing a
cold drink being served in a seaside bar on a hot summer day, the frus-
tration at the stain on your new suit as wine is spilled over it, the sensa-
tion of wetness as water is poured over your pants, etc. It is this kind of
common sense that forms the basis of everyday language communica-
tion, and it is firmly grounded in our own specific embodiment; in our
experience of interacting with objects in the real world. And to our
knowledge, there are currently no artificial systems capable of dealing
with this kind of knowledge in a flexible and adaptive way, because it is
not propositional and thus hard to formalize in a symbolic system.

Speech systems are another offshoot of classical Al. Natural lan-
guage—which is different from formal languages like mathematics or
computer programs—is one of the most striking abilities of an intelligent
being, and the quest to understand and build systems capable of natural
language has a long history in artificial intelligence. Initially, efforts were
mostly geared toward processing written language. Later on, speech cap-
tured the interest of many researchers, but expectations and false pre-
dictions about the speed of development of such systems have abounded.
Consequently there have been many disappointments, and the reputa-
tion of the field of artificial intelligence has suffered as a result. While in
restricted applications speech systems are helpful, especially where
single-word commands are sufficient as in some mobile phone applica-
tions, speech systems that can handle complete sentences or continuous
streams of speech, in a robust way and in noisy environments, have not
yet appeared on the market.

Speech-to-text systems—also called “phonetic typewriters”—have to
be tuned to the speaker’s voice, and typically a lot of post-editing needs
to be done on the text produced by the software, i.e., the text usually
contains many errors and needs to be corrected. This may be one of the
reasons why speech systems have not really taken off, even though the
idea of not having to type anymore—of producing text rapidly by simply
talking into a microphone—is highly appealing. But although some of
the systems may function to some degree and have turned out to be quite
useful, there are still no general-purpose natural-language systems whose
performance even remotely resembles that of humans in everyday con-
versation. (It is also interesting to note that major companies dealing in
speech systems have gone bankrupt in recent years. The most famous
example is L&H, Lernout and Houspie Speech Products in Belgium,
which marketed speech-to-text systems as one of the three major players
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in the field worldwide, the others being Dragon Systems and IBM. The
bankruptcy is officially due to illicit financial transactions and incorrect
sales figures, but we would speculate that while there certainly have been
financial and legal problems, the current immaturity of the underlying
speech technology probably made matters worse.)

Another way of looking at the successes and failures of classical arti-
ficial intelligence is that it has been successful at those tasks that humans
normally consider difficult—playing chess, applying rules of logic,
proving mathematical theorems, or solving abstract problems—whereas
actions we experience as very natural and effortless, such as seeing,
hearing, speaking, riding a bicycle, walking, drinking from a glass, assem-
bling a car from a Lego kit, talking, getting dressed, putting on makeup,
or brushing our teeth—all skills requiring common sense—have proved
notoriously hard. The successes in achieving these latter skills in artifi-
cial systems have been very limited, to say the least; the algorithmic
approach has simply not helped much in understanding intelligence (see
also Pfeifer and Scheier, 1999).

2.3 The Embodied Turn

These failures, largely due to the lack of rich interaction between system
and environment, have led some researchers to pursue a different
avenue; that of embodiment. With this change of orientation, the nature
of the research questions also began to change. Rodney Brooks, direc-
tor of the MIT Computer Science and Artificial Intelligence Laboratory,
a laboratory of about a thousand researchers, was one of the first pro-
moters of embodied intelligence. Brooks argued in a series of provoca-
tive papers entitled “Intelligence Without Representation” and
“Intelligence Without Reason” that intelligence always requires a body
and that we should forget about complex internal representations and
models of the outside world; that we should not focus on sophisticated
reasoning processes but rather capitalize on the system-environment
interaction (Brooks, 1991a). “The world is its own best model” was one
of his slogans at the time. Why build sophisticated models of the world
when you can simply look at it? In the second half of the 1980s he started
studying insect-like locomotion, and building, for example, the famous
six-legged walking robot “Ghengis.”

Why did he choose insects as his object of investigation? Brooks made
a case that because it took evolution so much longer to move from
inorganic matter to insects than it took to get from insects to humans,
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we should start by studying insects. Once we understand insect-level
intelligence—thus Brooks’s argument—it will be much easier and faster
to understand and build human-level intelligence because achieving
insect-level intelligence from scratch should be a much harder problem
than moving from insect-level intelligence to human-level intelligence.
To gain some perspective on this claim, consider this greatly abridged
history of evolution on Earth. Single-cell entities arose out of the pri-
mordial soup roughly 3.5 billion years ago. A billion years passed before
photosynthetic plants appeared. After almost another billion and a half
years—around 550 million years ago—the first fish and vertebrates came
into being, and 100 million years later insects emerged. Let us quote
directly from Brooks’s argument:

Then things started moving fast. Reptiles arrived 370 million years ago, followed
by dinosaurs at 330 and mammals at 250 million years ago. The first primates
appeared 120 million years ago and the immediate predecessors to the great apes
a mere 18 million years ago. Man arrived in roughly his present form 2.5 million
years ago. He invented agriculture a mere 19,000 years ago, writing less than
5,000 years ago and “expert” knowledge only over the last few hundred years.
(Brooks, 1990, p. 5)

Because of this interest in insects, walking and locomotion in general
became important research topics. This, of course, represents a funda-
mental change from studying chess, theorem proving, and abstract
problem solving, and it is not so obvious what the two areas have to do
with one another (an issue we will elaborate on later). Other topics that
people started investigating include orientation behavior: finding one’s
way in only partially known and changing environments, which includes
searching for “food” (symbolized by certain kinds of objects such as
small cylinders); bringing the food back to the “nest,” a behavior also
called homing; or generally exploring an environment. A lot of effort has
also been invested in the study of very elementary behaviors such as wall
following, moving toward a light source, and obstacle avoidance. It is
interesting to note that researchers in the field started using vocabulary
like “search for food,” “homing,” “going back to the nest,” etc., suggest-
ing that the robots developed in fact have animal-like properties.
Attributing lifelike properties to inanimate objects has a long history in
artificial intelligence, where researchers since the very beginnings have
ascribed humanlike properties to their computers or computer programs,
calling them intelligent or clever, claiming that they understand when
replying to questions, and so on. Attribution of lifelike properties to
artifacts seems to be a characteristic intrinsic to humans, or, as David
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McFarland, Oxford University behavior scientist and inventor of the field
of “animal robotics,” put it: “Anthropomorphization, the incurable disease.”
But then, anthropomorphization has been around for centuries: think
how many talking animals or objects there are in fairy tales or Disney
movies. McFarland’s point was that we have to be careful with the attrib-
utes we ascribe to animals, computers, or robots when we observe their
behavior, for instance when we say that the animal “wants” to eat or that
the robot “sees” a person. How do we know the animal “wants” some-
thing, and what do we really mean by this? But more about that later.

Now, the perspective of embodiment requires working with real-world
physical systems, such as robots. Although computers and robots are
often mentioned in one phrase, suggesting that they are roughly the
same, they are in fact quite different: the input to computers consists of
keystrokes or mouse clicks, and because keystrokes are discrete, the user
has to prepare whatever he or she wants to enter into the computer for
further processing in terms of the limited number of keys on the key-
board. By contrast, biological agents—animals and humans—have
complex sensors that provide a lot of continuously changing stimulation
and thus, potentially rich information about the real world. But the real
world does not come with labels: we have to try to make sense of this
sensory stimulation on our own, whereas in the case of the computer this
job has to be taken over by the user. Thus, truly autonomous robots, those
that are largely independent of human control, have to be situated, i.e.,
they have to be able to learn about the environment through their own
sensory systems, something computers simply cannot do. Also, comput-
ers are neat and clean, and almost anybody can understand, use, and
program them, and they lend themselves well to performing simulations.
But building robots requires engineering expertise which is typically not
present in computer science laboratories; it is messy, you have to get your
hands dirty, which is something that, in the age of information technol-
ogy, many people strongly dislike.

Generally speaking, the interaction of an embodied system with the
real world is always “messy” and ill defined, and there are many issues
one has to deal with, such as deciding on the kinds of environments in
which the robot has to function (e.g., office environments, factories, out-
doors in the city streets, in rough terrain, in homes, under water, in the
air, in outer space), the kinds of sensors to use (cameras, microphones,
infraread, ultrasound, touch), the actuators (hands, arms, legs, wings, fins,
wheels, or perhaps hooks or magnets), the energy supply (a notoriously
hard problem), and the materials from which the robot should be con-
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structed. To make matters worse, the physics of the agent-environment
interaction must also be considered. This includes accounting for the
forces, torques, and friction that the robot will experience: the environ-
ment changes rapidly and is predictable only to a very limited extent,
and the information about the world is always very limited. Most of
these considerations are normally not associated with the notion of
intelligence. The design principles for intelligent systems that will be
introduced in part II of this book try to capture all of the design con-
siderations that must be taken into account for embodied systems in the
real world.

So, the nature of the field of artificial intelligence changed dramati-
cally when embodiment entered the picture. While in the traditional
approach the relation to psychology—in particular, cognitive psychol-
ogy—had been very prominent, the interest, at least in the early days of
the embodied intelligence approach, shifted more toward nonhuman
biological systems such as insects, snakes, or rats. Also, at this point, the
meaning of the term artificial intelligence started to change, or rather
started to adopt two meanings: the first implies GOFALI, the traditional
algorithmic approach, while the other more generally designates a par-
adigm in which the goals are to understand biological systems while at
the same time exploiting that knowledge to build artificial systems. As a
result the modern, embodied approach started to move out of computer
science laboratories and into robotics, engineering, and biology labs.

2.4 The Role of Neuroscience

It is also of interest to look at the role of neuroscience in the context of
the shift to an embodied approach. In the 1970s and early 1980s, as
researchers in artificial intelligence started to recognize the problems of
the traditional symbol-processing approach, they began to search for
alternatives. Artificial neural networks seemed to provide the solution.
Although they had been around since the 1950s, neural networks only
started to really take off in the 1980s, just when artificial intelligence was
in a deep crisis and desperately looking for a way out. Loosely speaking,
artificial neural networks, or simply neural networks, are models that
implement “brain-style computation,” as some researchers call it. Neural
networks are collections of abstract models of neurons that are con-
nected to many other neurons to form large networks that function in a
massively parallel fashion. Although inspiration was drawn from the
brain, neural networks relate to brain activity only at a very abstract level
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and neglect many essential properties of biological neurons and brains.
Despite these abstractions, the algorithms based on these simple net-
works demonstrate impressive performance and can achieve, for
example, difficult classification and pattern-recognition tasks like decid-
ing from an X-ray image whether some tissue contains a cancerous tumor
or not, or distinguishing bags containing plastic explosives from innocu-
ous ones at airports. In chapter 5 we will provide a more detailed account
of neural networks (see also focus box 5.1).

In the field of cognitive psychology, artificial neural networks became
very popular for modeling a variety of phenomena such as categoriza-
tion (making distinctions between different types of objects) and per-
ception in general, but also language acquisition (how children learn to
master language) and memory. An exciting new discipline called con-
nectionist psychology emerged as a result (e.g., Ellis and Humphreys,
1999). Using neural network models of this kind was definitely a step in
the right direction, as they have highly desirable properties. For example,
like natural brains, they are massively parallel; they can learn, i.e., they
improve their behavior over time; they are noise and fault tolerant, i.e.,
they still function if the inputs are distorted and if some of the artificial
neurons cease to operate; and they can generalize, meaning they con-
tinue to work in situations that have never been encountered by the
network before, as long as those situations are similar to what they have
already learned. The main problem with the approach, however, was
that the networks were mostly disembodied, which means that they were
trained on data prepared by the designer; the networks did not collect
their own data in the environment using a body. With some exceptions,
real-time response was not required, because the models were not con-
nected to the outside world. In particular, they were not used in robots.

In the embodied approach, by contrast, the connection to the outside
world is crucial. As artificial intelligence researchers realized that
because natural neural systems are so skillful at controlling their host
body’s interaction with the real world, they might benefit by paying more
attention to biological detail, interest in neuroscience was renewed and
strengthened.” The kinds of networks suitable for these sorts of interac-
tions are different from the connectionist ones used in psychology
because they have to deal with real physical bodies and have to act in
real time. As a result, the artificial neural networks developed for these
purposes paid closer attention to biological properties, and researchers
in artificial intelligence started cooperating much more closely with neu-
robiologists. Around the same time, a new breed of neuroscientist started
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to appear, the so-called computational neuroscientists, and university
departments with names such as Computational Neuroscience or Neuro-
Informatics emerged almost overnight. Rather than performing experi-
ments with real brains, however, they developed detailed models either
of individual neurons or of specialized collections of neurons in the brain
such as the cerebellum, which plays a key role in motor control, or the
hippocampus, an area thought to be involved in memory functions, as
well as a host of models about aspects of the visual system. These are but
a few examples; the literature in the field is awesomely vast. And some
researchers in computational neuroscience became interested in issues
similar to the ones artificial intelligence researchers had started tackling,
e.g., locomotion, categorization, and sensory-motor coordination. Most
would not consider themselves to be doing research in artificial intelli-
gence, even though their research topics strongly overlap; for the most
part computational neuroscience has not (yet!) taken a strong interest
in embodiment. Finally, along a different but related line of development,
engineers have started cooperating with neuroscientists to connect elec-
tronic and electromechanical devices directly to neural tissue (as we will
see when we discuss cyborgs in chapter 8).

2.5 Diversification

So, in terms of research disciplines participating in the Al adventure, in
the classical approach it was computer science (of course), psychology
to a greater degree, and neuroscience to a lesser degree. A very close
cooperation with linguistics and computational linguistics became
popular due to the seminal—but somewhat misleading—work on gram-
matical structures pioneered by the outspoken linguist and political
activist Noam Chomsky of MIT; and finally there was a very close con-
nection with philosophy. This last connection specifically involved the
field of philosophy of mind, which is an attempt to unravel the myster-
ies of the human psyche, of thinking, intelligence, emotion, and con-
sciousness. At least in some areas of philosophy, there was a lot of
optimism about the potential contributions of the computer metaphor
toward a scientific understanding of the mind, as shown in the enthusi-
astic book by the British philosopher and Al researcher Aaron Sloman,
The Computer Revolution in Philosophy (Sloman, 1978). Alas, this hope
has not yet been fulfilled.

In the embodied approach, the picture altered considerably. Computer
science and philosophy are still part of the game as before, but now also



40 I Intelligence, Artificial Intelligence, Embodiment, and What the Book is About

engineering, robotics, biology, biomechanics (the discipline studying how
humans and animals move), material science, and neuroscience have
come into play, whereas psychology and linguistics have—at least tem-
porarily—if not disappeared, at least lost their status as core disciplines.
So we see somewhat of a shift of interest from high-level processes (as
studied in psychology and linguistics) to more low-level sensory-motor
processes. Recently psychology, especially developmental psychology,
has reentered the game in the context of developmental robotics, where
the grand goal is to mimic in robots the processes by which babies
develop into capable adults.

Although, as mentioned above, a certain amount of robotics work was
done in the initial years of artificial intelligence, as exemplified by the
research on the world-famous robot “Shakey” at Stanford Research
Institute in Palo Alto, California, robotics at the time played only a mar-
ginal role (Shakey earned its name by its hesitant, jerky way of moving).
Moreover, even though Shakey was indeed a physical robot acting in
the real world, the focus was very much on its internal processing; on the
kinds of computations it would have to do to navigate and orient in the
real world. In this sense, although Shakey had a body, it was very much
computational, and therefore in line with the classical paradigm. Because
of this, it could only operate in simple and judiciously designed static
environments. But, as always, it is easy to criticize with hindsight, and this
in no way diminishes the value of Shakey’s contribution to the develop-
ment of artificial intelligence. Just recently it was elected to the Robot
Hall of Fame of the Carnegie-Mellon Foundation, where historically sig-
nificant robots are on display. Other “laureates” include HAL 9000 from
Stanley Kubrick’s movie 2001: A Space Odyssey, the Mars Sojourner,
Honda’s Asimo, C3PO from Star Wars, and Astroboy. (Astroboy—called
Tetsuwan or “Iron Arm” Atom in Japan—the hero from an extremely
successful comic strip of the 1950s in Japan, has inspired many
researchers and visionaries in Japan who, today, build robots in the most
highly respected institutions. Astroboy is very much the spiritual father
of the contemporary intelligent robotics movement in Japan.)

As the participating disciplines have changed, the terms for describ-
ing the research area have also shifted: researchers using the embodied
approach no longer refer to themselves as doing artificial intelligence but
rather robotics, engineering of adaptive systems, artificial life, adaptive
locomotion, or bio-inspired systems. But more than that, not only have
researchers in artificial intelligence moved into neighboring disciplines,
scientists who have their origins in these other fields have started to play
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an important role in the study of intelligence. Computational neuro-
science is a case in point, although researchers in that field typically do
not perceive themselves as part of artificial intelligence. Thus, on the one
hand the field of artificial intelligence has significantly expanded, while
on the other hand its boundaries have become even fuzzier than they
were before.

So we now have a partial answer to the question of why we do not get
a representative sample of the research being done in modern artificial
intelligence when we type “embodied artificial intelligence” into a search
engine. Because the communities started to split, researchers in embod-
ied intelligence started going to other kinds of conferences that were not
purely artificial intelligence-based, as the names of these conferences
indicate: “Intelligent Autonomous Systems,” “Simulation of Adaptive
Behavior—From Animals to Animats,” “International Conference on
Intelligent Robotics and Systems,” “Adaptive Motion in Animals and
Machines,” “Artificial Life Conference,” “Evolutionary Robotics,” the
“International Joint Conference on Neural Networks” (among many
other neural network conferences), the “Genetic and Evolutionary Com-
putation Conference” (there are several other conferences dedicated to
artificial evolution, a topic we will explore in chapter 6), or the various
IEEE conferences (International Society of Electrical and Electronics
Engineering), and so on. In the early 1990s, when I (Rolf) tried to con-
vince people at Al conferences that embodiment is not only interesting
but essential for intelligence, and that unless we understand embodiment
we will never crack the conundrum of high-level intelligence, I mostly
got negative reactions, and no real discussion took place. So, I and many
colleagues turned to these other conferences, where people were more
receptive to the ideas of embodiment. More recently, perhaps because
of the stagnation in the field of classical Al in terms of tackling the big
problems about the nature of intelligence, there has been a growing
interest in the issue of embodiment. Most Al conferences have started
hosting workshops and special tracks on issues related to embodiment.
But by and large the communities of classical artificial intelligence and
of the embodied approach to intelligence are still separate, and will prob-
ably remain so for a while.

2.6 Biorobotics

This diversification has resulted in a number of interesting developments.
Oneg, as already mentioned, is the move away from human toward more
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animal-like intelligence, which was originally triggered because the
efforts to achieve human-level intelligence had not met with success.
Others include the appearance of the fields of biorobotics, developmen-
tal robotics, ubiquitous computing, artificial life, interface technology,
and multiagent systems. We will look into all these different areas briefly
throughout the course of this book.

Let us start with biorobotics. Biorobotics is a branch of robotics ded-
icated to building robots that mimic the behaviors of specific biological
organisms. A good illustration is the work done by the mathematician
and engineer Dimitri Lambrinos while he was working at the Artificial
Intelligence Laboratory at the University of Zurich. He started to coop-
erate with the world leader of ant navigation research, Ruediger Wehner,
also of the University of Zurich. Jointly, the two laboratories built a series
of robots, the Sahabot series (the name stands for Sahara robot). The
Sahabots mimic the long- and short-term navigation behaviors of the
desert ant Cataglyphis, an extraordinary animal that lives in a salt pan,
a very flat sandy ecological niche, in southern Tunisia. One of the chal-
lenges was to provide a proof of existence for the navigational mecha-
nisms that biologists proposed to explain how this animal gets around.
In other words, the goal was to demonstrate that these mechanisms
could, in principle, on a robot, reproduce the orientation behavior of the
desert ants. Note that this does not imply that the processes underlying
the ant’s behavior are indeed the same or similar to the one used on the
robot.

One such mechanism, and a very simple one at that, is the so-called
snapshot model, which was originally postulated by the British insect
biologist Tom Collett of Sussex University (Cartright and Collett, 1983),
who has worked with Wehner for many years. According to Collett, the
snapshot model is used by the ant (and other insects) for precise short-
range navigation to find the nest as it returns from a food-searching trip
(also known as foraging in biology). This model posits that as the ant
leaves the nest, which is essentially just a hole in the ground, it takes a
snapshot, a photographic picture of the horizon as seen from the posi-
tion of the nest, which is then stored in the ant’s brain (ants, unlike
humans, have almost omnidirectional vision, i.e., they see not only in the
front, but all around them). The ant then goes out on a foraging trip, trav-
eling sometimes up to 200 meters away from the nest, and returns to the
vicinity of the nest using a second navigation system, which is based on
an estimate of the distance from the nest and on polarized sunlight. The
polarized sunlight provides the ant with direction information and can
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be used as a kind of compass. This system is especially suited for long-
term navigation, but because long-term navigation systems always accu-
mulate error, the ant has to use the short-term navigation system—the
snapshot method—to find the exact location of the nest. From the long-
term navigation system the ant gets a signal that it is near the nest and
that another system must take over. The snapshot method then guides it
to the nest entrance. This model, which has been verified in literally
hundreds of experiments with real ants (e.g., Wehner et al., 1996), has
also been tested on robots in the very environment in which the ants live,
in the Sahara desert, with impressive success. While this does not imply
that the model used on the robot is the one actually employed by the
ants, it does show that such a mechanism could work in principle. Lam-
brinos, together with his colleague Ralf Moeller, developed another nav-
igation model, the so-called average landmark vector model (Lambrinos
et al.,2000), which is even simpler than the snapshot model. Both of these
navigation models can be used to make predictions of the animals’
behavior in certain situations that can be tested on the robots and with
real ants.

Note that in this navigation system the agents—the ant and the
robot—do not need a map of the environment in order to navigate suc-
cessfully. In other words, it does not need a model of the real world in
order to behave successfully, even though the ant cannot see the nest
from a distance! This is in contrast to the standard assumption that
detailed environmental information, like a map, is necessary for this kind
of navigation. The only “model” of the world consists of the estimate of
distance and direction to the nest for the long-term system, and the snap-
shot for the short-term system.

Just to illustrate the richness of the field, here is a selection of other
successful biorobotics projects: the insect-like flying robots (Miki and
Shimoyama, 1999) and the silkworm moth robots with pheromone
sensors (Kuwana et al., 1999) developed by the futurist engineer Isao
Shimoyama of the University of Tokyo; the fantastically realistic snake
robots developed by the renowned roboticist Shigeo Hirose of the Tokyo
Institute of Technology (Hirose, 1993); Barbara Webb’s work at the Uni-
versity of Edinburgh in Scotland on the phonotactic behavior of crick-
ets, i.e., how males are attracted by and move toward the sound of
females undeterred by the complexity, ruggedness, and noisiness of their
environment (Webb, 1996); the Robot Tuna developed at the MIT Ocean
Engineering Lab by Michael Triantafyllou (e.g., Triantafyllou and
Triantafyllou, 1995); Joseph Ayer’s projects on lobster and lamprey
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robots (Ayers 2004) at Northeastern University in Boston; Auke Ijspeert’s
work on the simulated robot salamander at the Swiss Federal Institute
of Technology in Lausanne, Switzerland (Ijspeert, 2001); the “artificial
mouse” developed at the University of Zurich to investigate the role of
whiskers in rodent behavior (e.g., Fend et al., 2003); and Frank Kirchner’s
research on robotic scorpions (Klaassen et al., 2002). There are many
additional examples of biorobots which have all been very productive
and have significantly contributed to our understanding of locomotion and
orientation behavior (for a collection of pertinent papers see, for example,
Webb and Consi, 2001, or the proceedings of the Adaptive Motion in
Animals and Machines Conference, e.g., Kimura et al., 2006). The list
could be continued almost indefinitely. In the meantime, locomotion and
orientation have become important research topics in artificial intelligence.

2.7 Developmental Robotics

The research in biorobotics is still gaining momentum and multiplying
throughout research laboratories worldwide. Toward the mid-1990s,
however, Brooks, who had been one of the initiators of the biorobotics
movement, argued that we had now achieved “insect-level intelligence”
with robots and we should move ahead toward new frontiers. But what
does it mean to say that we have achieved insect-level intelligence?
Ghengis, Attila, and Hannibal, three of Brooks’s six-legged robots, have
achieved impressive walking performance in terms of obstacle avoidance
and walking over uneven ground. However, insects can do many more
things. For example they can manipulate objects with their legs and
mouth, they can orient in sophisticated ways in different kinds of envi-
ronments (even in the desert!), they can build complex housing, they
have highly organized social structures, they reproduce and they care for
their offspring. Many of these abilities, for example reproduction or
complex social organizations, are far from being realized in robotic
systems. So, before we have achieved true insect-level intelligence, there
is still much research to be done.

But it is true that even though insects are fascinating, human-level
intelligence is even much more exciting; so it is understandable that after
a number of years of research on insect-level intelligence, Brooks and
many others wanted to do more interesting things. This seemed a good
time to tackle something more challenging: the human. Thus we are back
to the goals of traditional artificial intelligence, but now we can tackle
them with the experience of biorobotics. Throughout the book we will
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give many examples of how the insights gained have changed our think-
ing about intelligence. While in Japan humanoid robots had been a
research topic for many years already, these activities were not directly
related to artificial intelligence. This seems to be the reason why Brooks’s
move into humanoids had a strong impact on the research community,
although it was initially, and still is, met with considerable skepticism:
many researchers believe human intelligence is still way out of reach.
Nevertheless, in the early 1990s Brooks started the “Cog” project for the
development of a humanoid robot with the goal of eventually reaching
high-level cognition (Brooks and Stein, 1994).

The term humanoid robot is used for robots that typically have two
arms and legs, a torso and a movable head with a vision system, and
sometimes additional sensory modalities such as audio and touch. They
are called humanoid because there is a superficial visual resemblance to
humans. Because of their anthropomorphic shape, people have a strong
tendency to project humanlike properties onto these robots. But, careful:
remember David McFarland’s reference to anthropomorphization as an
incurable disease. Some science-fiction movies can also be misleading by
suggesting humanlike properties in their robots: Hollywood robots typ-
ically have a very high level of intelligence. Some are mean and want to
enslave mankind, reflecting a fear that, given the current state of the art
in robotics, is entirely unjustified. (Of course, we don’t have to wait for
superintelligent killer robots to be enslaved by machines—we are
already almost entirely dependent on our cars, computers, and mobile
phones, and we do many things just to please the machines, not because
we want to. A case in point was the Y2K problem, the year 2000 problem,
where companies and governments all over the world invested billions
of dollars in order to cope with the issue. We were forced to do so by our
computers: it was definitely not an act of free will. The only question is
whether we attribute evil intentions to the computers; but this is a philo-
sophical question—a matter of argument—not an empirical one. An
empirical question is one for which experiments can be devised to
support or falsify a hypothesis, and for this question—Are machines
evil?—that is not possible.)

But back to the Cog project. “Cog” is a pun, alluding both to its cog-
nitive abilities and to the cogs of a cogwheel, insinuating that cognition
or intelligence is really based on many simple cogs—processes—that
function together. Inspired by this project, many researchers were
attracted by the idea of moving toward human-level intelligence, which
had been the target of artificial intelligence all along, both classical and
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embodied. Around this time the field of developmental robotics
emerged. Its pertinent conferences come under many labels: “Emer-
gence and Development of Embodied Cognition,” “Epigenetic Robot-
ics,” “Developmental Robotics,” “Development of Embodied
Cognition,” “Humanoids,” etc. This was, of course, a happy change of
direction for those who might have been disappointed by the turn the
field had taken—insects simply are not as sexy as humans! And human
intelligence happens to be the most fascinating type of intelligence that
we know of. But once again, this strand of conferences is separate from
the traditional ones in artificial intelligence, and although the terms
embodiment and emergence might appear in the pertinent publications,
“embodied artificial intelligence” most often does not.

In the meantime, developmental robotics has grown into a consider-
able research and engineering community in its own right. Many people
in the field started developing humanoid robots, and in Japan, for
example, the research in this area is really exploding. In 1998 the pow-
erful Ministry of Economy, Trade, and Industry (METI) in Japan
launched a large five-year program for building humanoid robots: the
HRP, or Humanoid Robotics Program. The program was directed by the
grand old man of Japanese robotics, Hirochika Inoue, at the time pro-
fessor of engineering at the University of Tokyo, who has been a pioneer
in robotics since 1965. The HRP had the long-term goal of developing a
partner for humans, especially for the elderly, that could take over many
of their household chores, thus providing independence and autonomy
for as long as possible. This endeavor unites researchers from mechani-
cal and electronics engineering, robotics, artificial intelligence, develop-
mental psychology, and developmental neuroscience, and most of them
would probably not object to being classified as working in artificial
intelligence. But not only in Japan has the field gained momentum:
Europeans have also warmed to the topic, and the EU is sponsoring a
number of large projects in the field, such as the RobotCub (Robotics
Open Platform for Cognition, Understanding, and Behavior) (not to be
confused with the better-known Robocup competitions, in which robot
teams play soccer against each other), and Cogniron, the Cognitive
Robot Companion. We will discuss in more detail the research issues
being tackled in this exciting field when we embark on the challenge of
building high-level intelligence from the bottom up (chapter 5), and
when we look at robotic technology in everyday life (chapter 11).

It is perhaps worth mentioning that—fortunately—not everybody has
moved into humanoid or developmental robotics because there are a
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vast number of fascinating research issues to be tackled in animal behav-
ior, and biorobotics seems to be a highly productive way of doing so.

2.8 Ubiquitous Computing and Interfacing Technology

Another line of development that must not be overlooked is that of ubiq-
uitous computing and interfacing technology. We will discuss ubiquitous
computing in detail in chapter 8. Here we only discuss what is needed to
map out the research landscape of artificial intelligence.

Like artificial intelligence, computer science in general has undergone
dramatic change: the “core” areas of computer science—software engi-
neering, algorithm development, operating systems, and the virtual
machine—are topics that we by now understand relatively well, so
people have begun switching their focus to other, more challenging areas,
such as the largely unexplored territory of how computers can interact
with the real world beyond the typical keyboard-and-mouse setup. The
very primitive interaction of computers with humans and, by extension,
with the outside world in general, has for many years been one of the
greatly bemoaned facts of computer technology. There is a great deal of
activity in the human-computer interaction research community, aimed
at improving this situation. One way toward more sophistication in the
interaction with the environment is, of course, to put sensors and more
interesting input-output devices into the computer such as microphones,
cameras, and touch sensors. But the interaction of computers with
humans is not the only focus of interest. Rather than having computers
as “boxes” or devices separate from the rest of the world, it would be
nice if the computing technology were integrated with the world around
us so that humans could smoothly interact with it and no longer have to
push keys on a keyboard as in the old days. Computers should disappear;
they should become “invisible.”

The original idea was, as a first step, simply to put sensors everywhere:
into rooms, cars, furniture, clothes and so on and so forth. We are already
surrounded by systems working around the clock, doing work for us
without our being aware of it: this would just be a further step in that
direction.

More recently, ubiquitous computing researchers have also begun
exploring actuation: ways in which systems can not only sense, but also
influence and act upon their environments. The simplest example, the
thermostat, has been around for a very long time: based on a tempera-
ture measurement, the furnace is turned on or off. Another very
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well-known example is the garage door that opens automatically when
it senses the right car entering the driveway. It is one of the fundamen-
tal discoveries in (embodied) artificial intelligence that the close coupling
between sensory and motor systems is essential for intelligent behavior
(see chapter 4). This insight is starting to make its way into the ubiqui-
tous computing community.

Even though user interfaces have always been an important topic in
computer science, the main problem has been the low bandwidth of com-
munication, so to speak: normally only a mouse and keyboard are used
to get information into a computer. As we have already pointed out, a
lot of effort has been directed toward making speech an easy input
method for computers, but these efforts, for various reasons, have not
been extremely successful (yet). Just recently more interesting and rich
interfaces have been developed, such as the use of pressure sensors to
provide information about the user’s level of aggression, and to some
extent vision, using cameras that watch the user and try to collect infor-
mation about gaze direction (where is the user looking?) and emotional
state. There is also work on smell, but that, although very promising, has
not yet advanced significantly. Whether we actually want a computer that
can smell us, especially after a 14-hour nonstop programming session, is
another issue altogether. The study of wearables—computers that are
actually a part of our clothing—is related to ubiquitous computing, and
also raises fascinating ideas about the future of human-computer
interaction. What is interesting about all of these “movements”—human-
machine interfaces, wearables and ubiquitous computing—is that now
virtually all computer science departments are venturing into the real
world. They are not doing robotics per se, but many have started hiring
engineers and are establishing workshops where they can build hard-
ware, because now real-world devices need to be constructed. So far as
we can tell, there has been little theoretical development yet, but there
is a lot of creative experimentation going on. We feel that the set of
design principles that we have worked out for embodied systems, and
which we will describe in detail through chapters 4, 5, 6, and 7, will be
extremely useful in designing such systems. We will return to the topic
of ubiquitous computing in chapter 8.

In conclusion, it seems that a highly innovative and dynamic part of
computer science has moved from disembodied algorithms to embodied
real-world computing, or rather real-world interaction, just as artificial
intelligence has. Researchers in ubiquitous computing and interfacing
technology are—directly or indirectly—making important contributions
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to artificial intelligence. Conversely, advances in artificial intelligence—
from a perspective of embodiment—and robotics, specifically in sensing
and actuation technology, will contribute significantly to ubiquitous
computing and thus to modern computer science in general.

2.9 Attificial Life and Multiagent Systems

Another interesting development has its origins in the field of artificial
life, also called ALife for short. The classical perspective of artificial intel-
ligence had a strong focus on the individual, just like psychology does,
and as we have seen, psychology was the major discipline with which arti-
ficial intelligence researchers cooperated at the time. ALife has strong
roots in biology rather than psychology, and focuses on the emergence
of behavior in large populations of agents. In other words artificial life
research is interested in multiagent systems. We have to be a bit careful
with the term multiagent systems: in ALife research, the term complex
dynamical systems is usually preferred, because it also includes physical
inorganic systems, where the individual agents or components, such as
molecules or sand grains, only have limited agent characteristics. An
agent is assumed to have certain elementary sensory-motor abilities, so
that it can perceive aspects of the environment and, depending on this
information and its own state, perform certain behaviors. Molecules,
rocks, or other “dead” physical objects do not have this ability.

One early success of this field of study was the realization that complex
global behavior can emerge from simple rules and local interactions (e.g.,
Langton, 1995). Cellular automata are the typical representatives of this
approach, where the “agents” are individual cells of a grid. The next state
of each cell is determined by the cell’s own state and the state of its
neighbors. John Conway’s “game of life” (Gardner, 1970) is probably the
best-known example of cellular automata behavior: the cells on a two-
dimensional grid have two states, “on” or “off” (“alive” or “dead”), and
are controlled by four rules: If a live cell has less than two neighbors,
then it dies (loneliness); if a live cell has more than three neighbors, then
it dies (overcrowding); if a dead cell has three live neighbors, then it
comes to life (reproduction); otherwise, a cell stays as it is. The fascina-
tion of the game of life is the enormous variety of fun and sophisticated
spatiotemporal® patterns that emerge from these very simple rules.
People have given many of them names, such as oscillators, blinkers, flip-
flops, gliders, glider cannons, and so on; dozens of live demonstrations of
this game can be found on the Internet.
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What counts in typical artificial life systems is the entire population of
agents, not the individual. In the case of cellular automata, the individ-
ual “agents” are the cells on the grid, but these individuals are only of
interest in the context of many cells. Work on self-organization in insect
societies, for example by Jean-Louis Deneubourg of the Université Libre
de Bruxelles (at the Center for Nonlinear Phenomena and Complex
Systems), who studies social insects, also capitalizes on a population per-
spective and has attracted many researchers: “ant algorithms” (Dorigo
et al., 2002) and “swarm intelligence” (Bonabeau et al., 1999) are among
their coinages (see also Dorigo and Stiitzle, 2004). Deneubourg and
Dorigo were both inspired by the intellectual atmosphere created by the
physicist Ilya Prigogine, who was awarded the Nobel Prize in 1977 for
his work on dissipative structures. His thinking on self-organization and
complex systems has influenced many researchers in artificial life. Pri-
gogine, who had been living in Brussels for many years as the director
of the famous Solvay Institutes for Physics and Chemistry, had become
known outside the physics community for, among others, the book with
the provocative title Order out of Chaos (Prigogine and Stenger, 1984).

Self-organization is indeed one of the concepts that continually
pops up in modern artificial intelligence (see for example Camazine
et al., 2001), and we will encounter it throughout this book. By self-
organization we mean that some structure or pattern—for example,
patterns on butterfly wings, stripes on the fur of a zebra, or a particular
social organization in insect societies—comes about as a result of the
local interaction of many components, rather than by external direction,
manipulation, or global, centralized control. Self-organization is an
extremely powerful concept but hard to grasp intuitively because we
always try to understand the phenomena around us in terms of control.
However, once we grasp the idea, it becomes very natural and then it
seems hard to understand how we could have done without it before, as
we will see in chapters 6 and 7.

A beautiful example of how self-organization can lead to highly
sophisticated behavior is the formation of ant trails. Certain species of
ants are able to find the nearest food source among several sources
present in the vicinity of their nest, so the ants are somehow solving a
complex optimization problem. Deneubourg and Goss (1989) asked the
question of whether this ability is due to the intelligence of the individ-
ual ants or due to their social interaction. Attributing this capacity to the
individual ants would imply that the ants compare the distances to the
various food sources and based on this knowledge choose the nearest
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source. This in turn would require ample calculations and considerable
exploration and knowledge of the environment on the part of the indi-
vidual ants. But there is a much simpler solution. Ants mark their paths
with pheromones—chemicals with a strong scent—as they leave the nest
to search for food and when they come back from this journey. The ants
follow the pheromones, and at the crossings where several paths inter-
sect they choose the most heavily marked one with a certain probabil-
ity. Ants return sooner from nearer food sources and as a consequence
shorter paths are marked more intensively than those leading to sources
farther away. Because shorter paths are more heavily marked, they will
attract more ants which will accelerate the speed at which the shorter
paths are marked. This kind of process is an example of a positive feed-
back loop, and is often called an autocatalytic or self-reinforcing process.
Thus, we have a very simple explanation of how ants find their way to
the nearest food source in terms of self-organization rather than the cog-
nitive power of the individual.

Modular robotics, a research area that has drawn a lot of inspiration
from ALife research, also relates to multiagent systems. In this case the
individual agents are robotic modules capable of assembling into robots
with different morphologies (see, for example, the volume by Hara and
Pfeifer, 2003, for illustrations of modular robotic systems). One of the
goals of this research is to design systems capable of self-repair, a prop-
erty that all living systems have to some extent: a minor bruise or a cut
will automatically heal without any external intervention. Self-assembly
and self-reconfiguration are fascinating topics that will become increas-
ingly important as systems have to operate over extended periods of time
in remote, hostile environments, like the deep sea or other planets. The
seminal work by the futurist engineer Satoshi Murata of the Tokyo Insti-
tute of Technology and his coworkers (Murata et al.,2004) demonstrates
how self-reconfiguration can be achieved not only in simulation but with
real robotic systems (see figure 7.1 in chapter 7). It should be mentioned,
however, that to date self-repair and self-reconfiguration is tightly con-
trolled by a centralized algorithm, rather than emerging from local inter-
actions. But more about this in chapter 7.

Evolutionary systems are another example of so-called population
thinking, where the adaptivity of entire populations is studied rather than
the adaptivity of individuals. We will discuss the impact of evolutionary
thinking in chapter 6. Because of its close relation to biology, economics
has also taken inspiration from evolutionary thinking and created the
discipline of agent-based economics (e.g., Epstein and Axtell, 1996).
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Often, evolutionary algorithms and ant algorithms are used not as bio-
logical models, but rather as powerful optimization techniques: several
large industrial companies now make use of evolutionary and ant-based
algorithms for design and optimization (for an overview of the use of ant
algorithms in industry, see Dorigo and Stiitzle, 2004).

Interestingly, the term multiagent systems has quickly been adopted by
researchers in classical artificial intelligence, but their use of multiagent
systems is somewhat different. Rather than looking for emergence, as is
common in the field of ALife, they usually employ multiagent systems
to achieve particular tasks, for example search tasks on the Internet (e.g.,
Ferber, 1999). Often in this line of research the individual agents are
endowed with centralized control similar to that employed in the classi-
cal approach. So in many cases the multiagent approach in artificial intel-
ligence does not in fact study emergence.

In robotics also there has also been a growing interest in multiagent
systems. The recent surge of interest in robot soccer clearly demonstrates
this point. This movement, known as RoboCup, is passionately promoted
by the Japanese researcher and robot enthusiast Hiroaki Kitano and his
colleagues (Kitano et al., 1997), and interest in the project is not limited
to the scientific community but has spread to the population at large.
During the RoboCup world championship in 2002 in the Fukuoka
Dome, a stadium in the southwestern city of Fukuoka on the island of
Kyushu in Japan, there were more than 100,000 passionate, emotional
spectators, just like at a real soccer championship! One of the problems
in multi-agent robotics has been that often only a few robots are avail-
able for study—making copies of real-world robots is so much harder
than making copies of software—so that no truly interesting emergent
phenomena have been observed. In robot soccer, winning the game,
rather than emergence, is the goal. Recently, RoboCup teams have
achieved impressive performance: the games are beginning to look like
real soccer where the individual players are not only extremely fast but
cooperate with each other to score a goal.

One of the important research problems so far has been the achieve-
ment of higher levels of intelligence in the simulations created by the
multi-agent community. Typically, as in the work of the ethologist turned
AlLife researcher Charlotte Hemelrijk, who studies groups of virtual
primate-like agents, hierarchies among the agents and separate sub-
groups emerge on their own, or migration patterns materialize based
only on agent-agent interaction, without the need for preprogrammed
“desires” to form social hierarchies or to migrate. Thinking, reasoning,
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and language have typically not been topics of interest in the ALife field.
An exception is perhaps the work by the artificial intelligence researcher
and linguist Luc Steels, who, in his “Talking Heads” experiment (not to
be confused with the rock band of the same name), attempts to investi-
gate high-level cognition—natural language—from a population per-
spective (Steels, 2001, 2003). In an ingenious set of experiments he and
his students demonstrated how, for example, a common vocabulary
emerges through the interaction of the agents with their environment
and with each other. There is also some preliminary work on the emer-
gence of syntax. In this research, much insight has been gained into how
communication systems establish themselves—how they self-organize—
and how something like grammar could emerge without being prede-
fined in the individual agents. Although this approach is fascinating and
highly promising, the jury is still out on whether it will indeed lead to
something resembling natural language.

Because of the fundamental differences in goals, the distributed agents
community that has its origin in the artificial life community, and the one
that developed out of artificial intelligence and robotics, have so far
remained largely separate. Generally speaking, the artificial life commu-
nity has more of a focus on populations, distributed systems with local
interactions, self-organization, and complex dynamics and somewhat
less on embodied systems, but researchers in this field are definitely
contributing to (embodied) artificial intelligence—again, whether they
realize it or not.

2.10 Evolutionary Robotics

One of the principal research topics within ALife is trying to understand
how life originated on Earth, and for all we know, evolution played the
key role in this process. Thus it comes as no surprise that much of the
research within ALife is devoted to evolution: this includes trying to
understand natural evolution and designing creatures using artificial evo-
lution. Since the 1960s when artificial evolution was invented, so to speak
(see chapter 6), there have been many intriguing developments that have
led to insights into the general nature of evolution and have yielded fas-
cinating technological results. For example, using automated evolution-
ary design methods, devices have been produced that at times surpass
the performance of those designed by humans, such as electronic
circuits (e.g., Koza et al., 2004) or antennas (e.g., Lohn et al., 2004). For
our purposes, because of our interest in embodiment, the area known
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as evolutionary robotics is especially relevant. Methods from artificial
evolution can be used to design various aspects of robots. Traditionally,
in evolutionary robotics only the controller—the brain—of the robot was
evolved. But more recently, with the advent of more sophisticated
concepts such as models of genetic regulatory networks, entire robots—
including their body and neural systems—have been evolved. The
Japanese-Canadian evolutionary robotics enthusiast and entrepreneur
Takashi Gomi was one of the first to recognize the importance of this
field beyond its scientific interest, and he attempted to incorporate evo-
lutionary methods not only into robotics but into business. He organized
a highly successful conference series on evolutionary robotics at the
Canadian embassy in Tokyo. Since then, the field has become very
popular not only in Japan but throughout the world and a considerable
research community has been established. Understanding how embod-
ied systems emerge from an evolutionary process is an important
contribution to artificial intelligence. But once again, few evolutionary
roboticists consider what they are doing to be artificial intelligence. We
will explore evolutionary robotics more deeply in chapter 6.

2.11 Summary

In summary, we can see that the landscape of artificial intelligence has
changed significantly in recent years: while originally the field was clearly
a computational discipline dominated by computer science, cognitive
psychology, linguistics, and philosophy, it has now turned into a more
multidisciplinary field requiring the cooperation and talents of
researchers in many other fields such as biology, neuroscience, engi-
neering (electronic and mechanical), robotics, biomechanics, material
sciences, and dynamical systems. And this exciting new transdisciplinary
community, which is very different from the traditional Al community,
has been called “embodied artificial intelligence” or “embodied cogni-
tive science.” But since this is the modern view in artificial intelligence,
we will no longer employ the term embodied artificial intelligence: what
we have described in this chapter is what the discipline has become; it is
not merely a subset of the “real” or overarching field of artificial intelli-
gence: embodied artificial intelligence is now artificial intelligence.
Although for some time psychology and linguistics have not been at
center stage, with the rise of developmental robotics there has been
renewed interest in these disciplines. The ultimate quest to understand
and build systems capable of high-level thinking and natural language,
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and ultimately consciousness, has remained unchanged. What has
changed is the path—the methodology—to get there. Although the
emergence of ideas of embodiment can be found throughout the history
of philosophy, the recent developments in artificial intelligence that
enable not only the analysis but also the construction of embodied
systems are supplying ample new intellectual material for philosophers.

In spite of the multifaceted nature of artificial intelligence, there is a
unifying principle: the synthetic methodology that we will describe in
detail in the next chapter. Briefly, the synthetic methodology states that
by actually building physical agents—real robots—we can learn a lot
about the nature of intelligence. Moreover, and this is crucial for such a
diverse field, physical agents, by bringing together results from all the dif-
ferent areas described in this chapter, have a highly integrative function.
In addition, they allow for concrete testing of ideas in an objective way:
arobot either works or it does not; there is no glossing over details. More-
over, robots serve as excellent platforms for transdisciplinary research
and communication. By building systems using the synthetic methodol-
ogy, we not only produce fun and—at least sometimes—useful artifacts,
but we can acquire a deeper understanding of natural forms of intelli-
gence. Again, the impact of applying an embodied perspective is aston-
ishing: the insights are surprising and change the way we view ourselves
and the world around us in very fundamental ways. This is what our book
is all about.



